

CORE LABORATORIES

447-449 Belmont Ave, Kewdale, Perth WA 6105 Tel : (61 8) 9353 8888 Fax : (61 8) 9353 8899 Email : corelab.australia@corelab.com

### Final Report Special Core Analysis Selected Samples From <u>Wells : DMP Harvey-1,</u> <u>DMP Harvey-3, and DMP Harvey-4</u>

### Western Australia

Prepared for Department of Mines and Petroleum

February 2018

File : HOU-1703703

Rock Properties Group Core Laboratories Perth (Australia) and Houston (USA)

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, (all errors and omissions excepted); but Core Laboratories and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil gas or other mineral well or sand in connection with which such report is used or relied upon.



CORE LABORATORIES

447-449 Belmont Ave, Kewdale, Perth WA 6105 Tel : (61 8) 9353 8888 Fax : (61 8) 9353 8899 Email : corelab.australia@corelab.com

23<sup>rd</sup> February 2018

#### DEPARTMENT OF MINES AND PETROLEUM

100 Plain Street East Perth Western Australia, 6004

| Attention | : | Dominique Van Gent                           |
|-----------|---|----------------------------------------------|
| Subject   | : | Special Core Analysis                        |
| Wells     | : | DMP Harvey-1; DMP Harvey-3; and DMP Harvey-4 |
| File      | : | HOU-1703703                                  |

Dear Dominique,

Presented herein is the final report of the Special Core Analysis study conducted on selected core plug samples taken from the wells DMP Harvey-1, DMP Harvey-3 and DMP Harvey-4.

Thank you for the opportunity to have been of service to the Department of Mines and Petroleum. Please do not hesitate to contact us should you have any questions or if we can be of any further assistance.

Yours sincerely, CORE LABORATORIES AUSTRALIA PTY LTD

Ajit Singh Rock Properties Manager Core Laboratories Australia Pty Ltd Perth, Western Australia (08) 9353-8888 ajit.singh@corelab.com

### TABLE OF CONTENTS

Page

| • | Introduction                                       | 1-1 |
|---|----------------------------------------------------|-----|
| • | Special Core Analysis (SCAL) Test Schedule Summary | 1-2 |
| • | Summary of Results                                 | 1-4 |
| • | Porosity, Permeability and Grain Density           | 1-7 |

#### SECTION 2 : STEADY-STATE CO<sub>2</sub>-WATER / WATER-CO<sub>2</sub> RELATIVE PERMEABILITY

| • | Laboratory Procedures                                                                         | 2-1  |
|---|-----------------------------------------------------------------------------------------------|------|
| • | Summary of CO <sub>2</sub> -Water Relative Permeability by Steady-State Method                | 2-3  |
| • | Summary of Water-CO2 Relative Permeability by Steady-State Method                             | 2-4  |
| • | CO <sub>2</sub> -Water and Water-CO <sub>2</sub> Relative Permeability by Steady-State Method | 2-5  |
|   | Tabular and Graphical Results                                                                 |      |
| • | Basic Properties of Test Samples                                                              | 2-17 |
| • | Summary of Sample Parameters                                                                  | 2-18 |
| • | Tagged Synthetic Formation Brine                                                              | 2-19 |
| • | Summary of Fluid Parameters                                                                   | 2-20 |

#### SECTION 3 : UNSTEADY-STATE CO2-WATER / WATER-CO2 RELATIVE PERMEABILITY

| • | Laboratory Procedures                                               | 3-1 |
|---|---------------------------------------------------------------------|-----|
| • | Summary of CO2-Water Relative Permeability by Unsteady-State Method | 3-2 |
| • | Summary of Water-CO2 Relative Permeability by Unsteady-State Method | 3-3 |
| • | Basic Properties of Test Samples                                    | 3-4 |
| • | Summary of Sample Parameters                                        | 3-5 |
| • | Synthetic Formation Brine                                           | 3-6 |
| • | Summary of Fluid Parameters                                         | 3-7 |

#### APPENDICES

APPENDIX 1 Core Plug X-ray Computed Tomography (X-ray CT) Images : Pre-Test Samples

APPENDIX 2

Core Plug X-ray Computed Tomography (X-ray CT) Images : Post Steady-State and Unsteady-State Relative Permeability Testing

APPENDIX 3 Raw Data : Steady-State CO<sub>2</sub>-Water / Water-CO<sub>2</sub> Relative Permeability

APPENDIX 4 Reservoir Temperature and Pressure (Provided by the Department of Mines and Petroleum)

# SECTION 1 INTRODUCTION and SUMMARY

#### INTRODUCTION

This report contains the final results of the Special Core Analysis (SCAL) study performed on selected core plug samples from the wells DMP Harvey-1, DMP Harvey-3, and DMP Harvey-4 by Core Laboratories (CoreLab). This study was conducted on behalf of the Department of Mines and Petroleum (DMP).

The SCAL study comprised the following analyses :

- Basic properties (permeability, porosity, and grain density)
- Steady-state supercritical CO<sub>2</sub>-Water / Water-CO<sub>2</sub> relative permeability (full-curve)
- Unsteady-state supercritical CO<sub>2</sub>-Water / Water-CO<sub>2</sub> relative permeability (endpoints)

The SCAL analysis each sample underwent is presented in the test schedule summary (pages 1-2 and 1-3).

The steady-state and unsteady-state relative permeability analyses were performed at Core Laboratory's Advanced Technology Centre in Houston (Texas, USA).

CT-scan images of all the samples prepared and which underwent RCA measurements are presented in Appendix-1.

Appendix-2 comprises post-test CT-scan images of selected samples which underwent relative permeability testing.

Reservoir parameters of temperature and pressure were given by the DMP and included in Appendix-4.

#### SUMMARY OF RESULTS

#### Steady-State Relative Permeability

Six (6) core plug samples were selected for steady-state supercritical carbon dioxide  $(CO_2)$  – Water relative permeability tests. The selected samples (listed below, sorted by well and depth) had previously undergone Routine Core Analysis (RCA) measurements.

| Well Stratigraphic |               | Sample         | Plug Type  | Depth    |
|--------------------|---------------|----------------|------------|----------|
|                    | Unit          | no.            |            | (m)      |
|                    |               |                |            |          |
| DMP                | Wonnerup      | 74             | Horizontal | 1911 84  |
| Harvey-1           | Member        |                | Tionzontai | 1311.04  |
| DMP                | Wonnerup      | 150 Horiza     | Horizontal | 2519 42  |
| Harvey-1           | rvey-1 Member |                | HUHZUHTAI  | 2010.42  |
| DMP                | Wonnerup      | 120 Horizoptal | 2528.07    |          |
| Harvey-1           | Member        | 127            | TIONZONIA  | 2320.07  |
| DMP                | Wonnerup      | 12.0           | Horizontal | 2530.;03 |
| Harvey-1           | Member        | 134            |            |          |
| DMP                | Wonnerup      | 1.0            | Horizontal | 1427.47  |
| Harvey-3           | Member        |                |            |          |
| DMP                | Wonnerup      | 6B             | Horizontal | 1704 27  |
| Harvey-4           | Member        |                | TIONZONIA  | 1734.27  |

The steady-state supercritical CO<sub>2</sub>-Water relative permeability tests were performed at various temperatures (48°C to 71°C) and net confining stresses (1700 to 2600 psi) while maintaining the supercritical point for CO<sub>2</sub> throughout testing.

Tagged brine was injected into each sample and specific permeability to brine (Kw at 100% Sw) was determined. Then  $CO_2$  and brine were injected at several ratios allowing the  $CO_2$  saturation to increase. Finally  $CO_2$  only was injected. At initial conditions, the specific permeabilities to brine ranged from 0.206 to 258 md. The effective permeabilities to  $CO_2$  at terminal conditions ranged from 0.0143 to 22.4 md and the relative permeabilities to  $CO_2$  ranged from 6.92 to 27.7 percent (relative to the specific permeability to brine). Water recoveries ranged from 38.9 to 57.8 percent of the water-in-place. The results from the steady-state supercritical CO2 displacing Water relative permeability tests are summarized on page 2-3.

The samples were then tested for water displacing supercritical  $CO_2$  relative permeability. The effective permeability to  $CO_2$  at the beginning of the test ranged from 0.0143 to 22.4 md, as noted previously.

At the end of the test, the effective permeabilities to water ranged from 0.0278 to 14.8 md and the relative permeability to brine ranged from 4.81 to 15.6 percent (relative to the specific permeability to brine). The final CO<sub>2</sub> recoveries ranged from 42.9 to 70.4 percent of the gas-inplace and the residual CO<sub>2</sub> saturations ranged from 13.7 to 29.8 percent of pore space. The results from the water displacing supercritical CO<sub>2</sub> relative permeability tests are summarized on page 2-4.

The steady-state full-curve  $CO_2$  displacing water ( $CO_2$ -Water) and water displacing  $CO_2$  (Water- $CO_2$ ) tests results are presented in tabular and graphical formats within pages 2-5 and 2-16. The Test Raw data is presented in Appendix 3.

#### Unsteady-State Relative Permeability

Six (6) samples were submitted for the unsteady-state relative permeability gas-displacing-brine and brine-displacing-gas tests. The selected samples (listed below, sorted by well and depth) had previously undergone Routine Core Analysis (RCA) measurements.

| Well     | Stratigraphic | Sample  | Plug Type  | Depth   |
|----------|---------------|---------|------------|---------|
|          | Unit          | no.     |            | (m)     |
|          |               |         |            |         |
| DMP      | Wonnerup      | 7B      | Horizontal | 1011 80 |
| Harvey-1 | Member        | 10      | Honzontai  | 1911.09 |
| DMP      | Wonnerup      | ۹D      | Horizontal | 1010 00 |
| Harvey-1 | Member        | OD      | Honzontai  | 1919.90 |
| DMP      | Wonnerup      | OP      | Horizontal | 2401 79 |
| Harvey-1 | Member        | 90      | HUHZUHlai  | 2491.70 |
| DMP      | Wonnerup      | 110 Hor | Horizontal | 2522 54 |
| Harvey-1 | Member        | ПА      | HUHZUHIai  | 2022.04 |
| DMP      | Yalgorup      | 10      | Horizontal | 1260.94 |
| Harvey-3 | Member        | 47      | Honzontai  | 1309.04 |
| DMP      | Yaldorup      | 2P      | Horizoptal | 1202 25 |
| Harvey-3 | Member        | JD      |            | 1392.35 |

The unsteady-state supercritical CO<sub>2</sub>-Water relative permeability tests (endpoints only) were performed at various temperatures (47°C to 70°C) and net confining stresses (2000 to 3600 psi) while maintaining the supercritical point for CO<sub>2</sub> throughout testing.

Synthetic formation brine was injected through the saturated samples and specific permeability to brine (Kw at 100% Sw) was measured at two injection rates. At initial conditions, the specific

permeabilities to brine ranged from 0.0758 to 62.7 md. CO<sub>2</sub> was then injected at a constant pressure and effective permeability to gas was determined.

Following the gas injection, the effective permeabilities to  $CO_2$  ranged from 0.0342 to 23.5 md and the water saturations ranged from 31.5 to 69.1% of the pore space. The relative permeability to  $CO_2$  ranged from 21.3 to 84.2% (relative to the specific permeability to water). Water recoveries ranged from 30.9 to 68.5% of the initial water in place.

At the conclusion of the  $CO_2$  gas-displacing-water tests, unsteady-state water-gas relative permeability endpoint tests were performed on the same six samples. Brine was injected into the core sample, again at varied pressure and temperature. The  $CO_2$ -gas recoveries ranged from 47.2 to 69.0 percent of the initial gas in place. The residual  $CO_2$ -gas saturation values ranged from 12.2 to 31.7% of the initial gas in place.

Results from the unsteady-state supercritical  $CO_2$ -Water relative permeability tests (endpoints only) are presented within pages 3-2 and 3-3.

### SECTION 2 STEADY-STATE CO<sub>2</sub> - WATER / WATER - CO<sub>2</sub> RELATIVE PERMEABILITY

#### Steady State CO<sub>2</sub>-Water / Water- CO<sub>2</sub> Relative Permeability

- Tagged synthetic formation brine was prepared based on the provided analysis with 73.0 g/L sodium iodide as the x-ray blocker, using deionized water and reagent grade chemicals (full brine composition given on page 2-19). The brine was filtered to 0.45 microns and degassed. Fluid parameters including viscosity and density were measured at various given reservoir temperatures (page 2-20).
- 2. The simulated formation brine was then saturated with carbon dioxide gas at specified net confining stress (see data for individual sample stress).
- 3. The clean, dry core plugs were weighed and measured and sleeved with Teflon and heat shrink. Samples were then reweighed.
- 4. Each plug sample was loaded into the specially designed core holder constructed of an alloy that allows penetration by the x-rays used to monitor saturation changes during steady-state testing. Net confining stresses were applied as specified.
- 5. The sample was x-ray scanned at the 100% gas saturation for the base scan.
- 6. Non-humidified nitrogen was injected for at least 10 pore volumes at a suitable constant rate until an equilibrium differential pressure was observed. Temperature was elevated to the specified test temperature (Appendix-4). Injection rate was decreased to half rate and continued until an equilibrium differential pressure was observed. The sample was x-ray scanned at the 100% nitrogen gas saturation for the nitrogen base scan.
- 7. Non-humidified carbon dioxide (CO<sub>2</sub>) gas was injected at a suitable constant rate for at least to displace the nitrogen. Injection continued for at least 10 pore volumes and equilibrium differential pressure was observed. The sample was x-ray scanned at the 100% CO<sub>2</sub> gas saturation for the 100% CO<sub>2</sub> base scan.
- 8. Tagged non-gasified synthetic formation brine was injected at a suitable constant rate until an equilibrium differential pressure was observed. Injection continued for at least 10 pore volumes and equilibrium differential pressure was observed. Injection rate was decreased to half rate and continued until an equilibrium differential pressure was observed. The sample was x-ray scanned at the 100% tagged brine saturation for the 100% tagged brine base scan.
- 9. Tagged gasified synthetic formation brine was injected at a suitable constant rate until an equilibrium differential pressure was observed. Injection continued for at least 10 pore volumes and equilibrium differential pressure was observed. Injection rate was decreased to half rate and continued until an equilibrium differential pressure was observed. The sample

was x-ray scanned at the 100% tagged gasified brine saturation for the 100% tagged gasified brine base scan.

- 10. Supercritical carbon dioxide and brine, which had been pre-equilibrated, were then injected simultaneously at several increasing gas-water injection ratios to allow the CO<sub>2</sub> saturation within the sample to increase. Saturation changes were monitored by x-ray scan. The gas-water injection ratios are given within the test raw data (Appendix 3).
- 11. Injection was continued at each ratio until an equilibrium steady-state condition within the core plug was established, based on the consistency of the saturation profile and differential pressure. Flow rates and differential pressures were monitored throughout the test process. Finally CO<sub>2</sub> alone was injected until pressure equilibrated and effective permeability to CO<sub>2</sub> at residual water saturation was determined at two injection rates.
- 12. Supercritical carbon dioxide and brine, which had been pre-equilibrated, were then injected simultaneously at several increasing water-gas injection ratios to allow the water saturation within the sample to increase. Saturation changes were monitored by x-ray scan.
- 13. Injection was continued at each ratio until equilibrium, steady-state condition within the core plug was established, based on the consistency of the saturation profile and differential pressure. Finally approximately 3 pore volumes of brine alone were injected while scanning the sample every pore volume and effective permeability to water at trapped CO<sub>2</sub> saturation was determined at two injection rates.
- 14. Measured flow rates and differential pressures at equilibrium conditions for each water- CO<sub>2</sub> injection ratio were used to calculate the steady-state relative permeability data for each sample. Saturations were determined by the x-ray attenuation method where x-ray scans measured at each saturation were combined with base scans at 100% saturations by the following equation :

 $Sw = \frac{\log(scan) - \log(scan_{Kg})}{\log(scan_{Kw}) - \log(scan_{Kg})}$ 

where:

| Sw                 | = Water saturation, fraction pore space |  |  |
|--------------------|-----------------------------------------|--|--|
| scan               | = X-ray scan, counts                    |  |  |
| scan <sub>Kw</sub> | = X-ray scan at 100% Sw, counts         |  |  |
| scanKg             | = X-ray scan at 100% Sg, counts         |  |  |

15. Finally, the samples were submitted for post-test CT-scanning.

### SECTION 3 UNSTEADY-STATE CO<sub>2</sub> - WATER / WATER - CO<sub>2</sub> RELATIVE PERMEABILITY

#### Unsteady-State CO<sub>2</sub> Gas-Water and Water-CO<sub>2</sub> Gas Relative Permeability

- 1. The clean, dry core plugs were weighed and measured and sleeved with Teflon and nickel. Samples were then re-weighed.
- 2. The samples were pressure saturated with synthetic formation brine and specific permeability to brine was determined.
- 3. The saturated samples were loaded into individual core holders and net confining stress was applied (see data for individual sample stresses). The pore pressure for each sample (2700 and 3600 psi for the DMP Harvey-1 samples; 2000 psi for the DMP Harvey-3 samples; and 2600 psi for the DMP Harvey-4 samples) was established by passing formation brine through the system and around the sample. Coreholder, sample, and system were elevated to reservoir temperature while maintaining net confining stress and pore pressure.
- 4. Synthetic formation brine was injected through each sample in the injection direction at a suitable constant rate until an equilibrium differential pressure was observed. Specific permeability to brine was measured at three injection rates
- 5. Supercritical CO<sub>2</sub> was injected at a constant rate. Produced liquid, CO<sub>2</sub> volumes, elapsed time, and differential pressure were monitored. Humidified supercritical CO2 was injected until a gas-water relative permeability ratio of 100:1 or greater was observed. Effective permeability to gas at residual water saturation was determined at three injection pressures.
- Synthetic brine was again injected through the samples at a low constant rate, while monitoring gas volume, time and differential pressure until no more CO<sub>2</sub> production was detected. Effective permeability to brine at residual CO<sub>2</sub> saturation was determined at three injection rates.
- 7. Each sample was unloaded and submitted for Dean Stark\* residual fluid determinations and cleaning.
- 8. Unsteady-state gas-water and water- CO<sub>2</sub> endpoints were calculated.
- 9. Finally, the samples were submitted for post-test CT-scanning.

### **APPENDICES**

### **APPENDIX 1**

### Core Plug X-ray Computed Tomography (X-ray CT) Images

**Pre-Test Samples** 

### APPENDIX 2 Core Plug X-ray Computed Tomography (X-ray CT) Images

Post Steady-State and Unsteady-State Relative Permeability Test

### **APPENDIX 3**

**Raw Data** 

Steady-State CO<sub>2</sub>-Water / Water-CO<sub>2</sub> Relative Permeability

### **APPENDIX 4**

## Reservoir Temperature and Pressure (Provided by Department of Mines and Petroleum)











Scan Settings - Window: 1500 / Level: 1700







Scan Settings - Window: 1500 / Level: 1700























Petroleum Services 6316 Windfern Houston, Texas 77040 USA Tel: 713-328-2565 Fax: 713-328-2567 www.corelab.com



February 1, 2018 AUS-1703703














# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 2000 psi Temperature : 58.0°C

| Well: DN | IP Harvey-1 |
|----------|-------------|
|----------|-------------|

| Sample Number :                       | 7A      |
|---------------------------------------|---------|
| Sample Depth, meters :                | 1911.84 |
| Klinkenberg Permeability to Air, md : | 0.559   |
| Porosity, fraction :                  | 0.107   |
| Initial Water Saturation, fraction :  | 1.00    |
| Specific Permeability to Brine, md :  | 0.266   |
| Specific Permeability to Brine, md :  | 0.266   |

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm <sup>3</sup> /min | Gas<br>Flow Rate,<br>cm <sup>3</sup> /min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|
|                                         |                                                             |                                             |                                           |                                     |                                   |
| Specific Kw                             | -                                                           | 0.500                                       | -                                         | 20.5                                | -                                 |
| -                                       | 0.018                                                       | 0.445                                       | 0.055                                     | 36.2                                | 4.48                              |
| -                                       | 0.055                                                       | 0.365                                       | 0.135                                     | 9.77                                | 3.61                              |
| -                                       | 0.260                                                       | 0.035                                       | 0.065                                     | 4.46                                | 8.29                              |
| -                                       | 1.25                                                        | 0.010                                       | 0.090                                     | 5.74                                | 51.7                              |
| -                                       | 13.9                                                        | 0.005                                       | 0.495                                     | 0.131                               | 13.0                              |
| Kg at Swr                               | -                                                           | -                                           | 0.500                                     | -                                   | 13.3                              |
| -                                       | 13.5                                                        | 0.016                                       | 1.484                                     | 0.746                               | 69.2                              |
| -                                       | 1.33                                                        | 0.024                                       | 0.226                                     | 3.24                                | 30.5                              |
| -                                       | 0.266                                                       | 0.088                                       | 0.162                                     | 5.20                                | 9.57                              |
| -                                       | 0.052                                                       | 0.073                                       | 0.027                                     | 10.0                                | 3.68                              |
| -                                       | 0.018                                                       | 0.089                                       | 0.011                                     | 5.35                                | 0.661                             |
| Kw at Sgt                               | -                                                           | 0.100                                       | -                                         | 14.2                                | -                                 |

# CO<sub>2</sub> - BRINE / BRINE - CO<sub>2</sub> RELATIVE PERMEABILITY

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 70.0°C

| Well :          | DMP Harvey-1 |
|-----------------|--------------|
| Sample Number : | 15A          |

| Sample Depth, meters : 25 | 18.42 |
|---------------------------|-------|

Klinkenberg Permeability to Air, md : 0.340

Porosity, fraction : 0.103

Initial Water Saturation, fraction : 1.00 Specific Permeability to Brine, md : 0.206

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm <sup>3</sup> /min | Gas<br>Flow Rate,<br>cm <sup>3</sup> /min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|
|                                         |                                                             | 4.00                                        |                                           | 10.4                                |                                   |
| Specific KW                             | -                                                           | 1.00                                        | -                                         | 13.4                                | -                                 |
| -                                       | 0.016                                                       | 0.092                                       | 0.008                                     | 33.6                                | 3.04                              |
| -                                       | 0.049                                                       | 0.079                                       | 0.021                                     | 10.5                                | 2.79                              |
| -                                       | 0.258                                                       | 0.106                                       | 0.144                                     | 6.75                                | 9.17                              |
| -                                       | 1.22                                                        | 0.013                                       | 0.087                                     | 1.73                                | 11.5                              |
| -                                       | 13.4                                                        | 0.007                                       | 0.493                                     | 1.10                                | 75.3                              |
| Kg at Swr                               | -                                                           | -                                           | 0.500                                     | -                                   | 73.8                              |
| -                                       | 13.5                                                        | 0.007                                       | 0.493                                     | 1.50                                | 100                               |
| -                                       | 1.22                                                        | 0.013                                       | 0.087                                     | 1.72                                | 11.5                              |
| -                                       | 0.262                                                       | 0.106                                       | 0.144                                     | 6.00                                | 8.16                              |
| -                                       | 0.049                                                       | 0.079                                       | 0.021                                     | 10.9                                | 2.89                              |
| -                                       | 0.016                                                       | 0.092                                       | 0.008                                     | 5.44                                | 0.473                             |
| Kw at Sgt                               | -                                                           | 0.100                                       | -                                         | 12.9                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 71.0°C

| Wel | I: DMP | Harvey-1 |
|-----|--------|----------|
|     |        | ,        |

| Sample Number :                       | 12A     |
|---------------------------------------|---------|
| Sample Depth, meters :                | 2528.07 |
| Klinkenberg Permeability to Air, md : | 45.1    |
| Porosity, fraction :                  | 0.124   |
| Initial Water Saturation, fraction :  | 1.00    |
| Specific Permeability to Brine, md :  | 15.8    |

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm <sup>3</sup> /min | Gas<br>Flow Rate,<br>cm <sup>3</sup> /min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|
|                                         |                                                             |                                             |                                           |                                     |                                   |
| Specific Kw                             | -                                                           | 3.00                                        | -                                         | 19.7                                | -                                 |
| -                                       | 0.018                                                       | 2.73                                        | 0.267                                     | 14.7                                | 1.43                              |
| -                                       | 0.053                                                       | 2.32                                        | 0.681                                     | 14.1                                | 4.13                              |
| -                                       | 0.264                                                       | 1.22                                        | 1.784                                     | 7.72                                | 11.3                              |
| -                                       | 1.31                                                        | 0.360                                       | 2.640                                     | 1.72                                | 12.6                              |
| -                                       | 13.2                                                        | 0.040                                       | 2.960                                     | 0.549                               | 40.6                              |
| Kg at Swr                               | -                                                           | -                                           | 3.000                                     | -                                   | 23.3                              |
| -                                       | 13.2                                                        | 0.040                                       | 2.960                                     | 0.489                               | 36.2                              |
| -                                       | 1.31                                                        | 0.360                                       | 2.640                                     | 2.49                                | 18.3                              |
| -                                       | 0.264                                                       | 1.22                                        | 1.784                                     | 7.89                                | 11.6                              |
| -                                       | 0.053                                                       | 2.32                                        | 0.681                                     | 13.7                                | 4.03                              |
| -                                       | 0.018                                                       | 2.73                                        | 0.267                                     | 12.0                                | 1.17                              |
| Kw at Sgt                               | -                                                           | 2.70                                        | -                                         | 8.75                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 71.0°C

|  | Well : | DMP | Harvey-1 |
|--|--------|-----|----------|
|  |        |     |          |

| Sample Number :                        | 13A     |
|----------------------------------------|---------|
| Sample Depth, meters :                 | 2530.03 |
| Klinkenberg Permeability to Air, md :  | 91.2    |
| Porosity, fraction :                   | 0.135   |
| Initial Water Saturation, fraction :   | 1.00    |
| Creatific Devreachility to Drive and i | 10.0    |

Specific Permeability to Brine, md : 18.6

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm³/min | Gas<br>Flow Rate,<br>cm³/min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Specific Kw                             | _                                                           | 3.00                           | _                            | 29.8                                | _                                 |
| -                                       | 0.028                                                       | 2.59                           | 0.408                        | 17.1                                | 2.70                              |
| -                                       | 0.084                                                       | 1.36                           | 0.641                        | 5.10                                | 2.40                              |
| -                                       | 0.422                                                       | 0.595                          | 1.41                         | 3.81                                | 8.99                              |
| -                                       | 2.11                                                        | 0.156                          | 1.84                         | 1.24                                | 14.6                              |
| -                                       | 20.8                                                        | 0.017                          | 1.98                         | 0.098                               | 11.4                              |
| Kg at Swr                               | -                                                           | -                              | 2.00                         | -                                   | 22.1                              |
| -                                       | 20.8                                                        | 0.017                          | 1.98                         | 0.288                               | 33.6                              |
| -                                       | 2.11                                                        | 0.156                          | 1.84                         | 0.723                               | 8.55                              |
| -                                       | 0.423                                                       | 0.595                          | 1.41                         | 2.82                                | 6.67                              |
| -                                       | 0.085                                                       | 1.36                           | 0.641                        | 6.30                                | 2.97                              |
| -                                       | 0.028                                                       | 2.59                           | 0.408                        | 10.3                                | 1.62                              |
| Kw at Sgt                               | -                                                           | 2.50                           | -                            | 7.16                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature : 48.0°C

| Well : | DMP | Harvey-3 |
|--------|-----|----------|
|--------|-----|----------|

| Sample Number :                       | 1A      |
|---------------------------------------|---------|
| Sample Depth, meters :                | 1427.47 |
| Klinkenberg Permeability to Air, md : | 180     |
| Porosity, fraction :                  | 0.231   |
| Initial Water Saturation, fraction :  | 1.00    |
| Specific Dormochility to Dring and :  | 04.0    |

Specific Permeability to Brine, md : 94.9

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm³/min | Gas<br>Flow Rate,<br>cm³/min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Specific Kw                             | -                                                           | 2 00                           | _                            | 11.5                                | _                                 |
| -                                       | 0.012                                                       | 1.81                           | 0.187                        | 7.19                                | 0.742                             |
| -                                       | 0.036                                                       | 1.53                           | 0.474                        | 7.74                                | 2.40                              |
| -                                       | 0.177                                                       | 0.784                          | 1.22                         | 6.10                                | 9.49                              |
| -                                       | 0.888                                                       | 0.457                          | 3.54                         | 2.37                                | 18.4                              |
| -                                       | 8.87                                                        | 0.102                          | 7.90                         | 0.365                               | 28.2                              |
| Kg at Swr                               | -                                                           | -                              | 8.00                         | -                                   | 30.4                              |
| -                                       | 8.88                                                        | 0.102                          | 7.90                         | 0.254                               | 19.7                              |
| -                                       | 0.890                                                       | 0.457                          | 3.54                         | 1.76                                | 13.6                              |
| -                                       | 0.179                                                       | 1.57                           | 2.43                         | 3.13                                | 4.86                              |
| -                                       | 0.036                                                       | 1.53                           | 0.474                        | 12.6                                | 3.93                              |
| -                                       | 0.012                                                       | 1.81                           | 0.187                        | 11.6                                | 1.19                              |
| Kw at Sgt                               | -                                                           | 2.00                           | -                            | 9.59                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature: 56.0°C

| Well :                                | DMP Harvey-4 |
|---------------------------------------|--------------|
| Sample Number :                       | 6B           |
| Sample Depth, meters :                | 1794.27      |
| Klinkenberg Permeability to Air, md : | 1120         |
| Porosity, fraction :                  | 0.219        |
| Initial Water Saturation, fraction :  | 1.00         |
| Specific Permeability to Brine, md :  | 258          |
|                                       |              |

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm³/min | Gas<br>Flow Rate,<br>cm³/min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| On a sifin Kuu                          |                                                             | 2.00                           |                              | 0.04                                |                                   |
| Specific Kw                             | -                                                           | 2.00                           | -                            | 8.91                                | -                                 |
| -                                       | 0.013                                                       | 1.83                           | 0.171                        | 7.59                                | 0.710                             |
| -                                       | 0.039                                                       | 1.56                           | 0.439                        | 10.7                                | 3.01                              |
| -                                       | 0.193                                                       | 0.831                          | 1.169                        | 3.70                                | 5.21                              |
| -                                       | 0.966                                                       | 0.996                          | 7.00                         | 3.40                                | 23.9                              |
| -                                       | 9.64                                                        | 0.112                          | 7.89                         | 0.429                               | 30.2                              |
| Kg at Swr                               | -                                                           | -                              | 8.00                         | -                                   | 25.1                              |
| -                                       | 9.65                                                        | 0.112                          | 7.89                         | 0.302                               | 21.3                              |
| -                                       | 0.967                                                       | 0.996                          | 7.00                         | 2.26                                | 15.9                              |
| -                                       | 0.193                                                       | 1.17                           | 0.831                        | 4.05                                | 5.70                              |
| -                                       | 0.039                                                       | 1.56                           | 0.439                        | 6.79                                | 1.91                              |
| -                                       | 0.013                                                       | 1.83                           | 0.171                        | 8.05                                | 0.753                             |
| Kw at Sgt                               | -                                                           | 2.00                           | -                            | 10.2                                | -                                 |

# SPECIAL CORE ANALYSIS (SCAL) TEST SCHEDULE SUMMARY

(Sorted by well and depth)

| Stratigraphic | Sample | Depth | CT-S | CT-Scan |              | ability, | Grain                     | Supercriti | cal CO2- |
|---------------|--------|-------|------|---------|--------------|----------|---------------------------|------------|----------|
| Unit          | no.    | (m)   | Pre- | Post-   | and Porosity |          | and Porosity Density Wate |            | Krel     |
|               |        |       | Test | Test    | at at        |          |                           | SS Full-   | USS      |
|               |        |       |      |         | ambient NOBP |          |                           | Curve      | End-     |
|               |        |       |      |         |              |          |                           |            | Points   |

#### Wonnerup 7A 1911.84 Х Х Х Х Х Х Member Wonnerup 8A Х Х Х Х 1919.86 Member Wonnerup 7B 1911.89 Х Х Х Х Х Х Member Wonnerup Х Х Х Х 8B 1919.90 Х Х Member Wonnerup 9A 2491.72 Х Х Х Х Member Wonnerup 9B Х Х Х Х Х 2491.78 Х Member Wonnerup 10A 2508.63 Х Х Х Х Member Wonnerup 10B 2508.67 Х Х Х Х Member Wonnerup 14A 2517.76 Х Х Х Х Member Wonnerup 15A 2518.42 Х Х Х Х Х Х Member Wonnerup 11A 2522.54 Х Х Х Х Х Х Member Wonnerup 11B 2522.59 Х Х Х Х Member Wonnerup 12A 2528.07 Х Х Х Х Х Х Member Wonnerup 12B 2528.12 Х Х Х Х Member Wonnerup Х 13A 2530.03 Х Х Х Х Х Member Wonnerup 2530.07 Х Х Х Х 13B Member

#### Well : DMP Harvey-1

| Yalgorup<br>Member | 4A | 1369.84 | Х | Х | Х | Х | Х | Х |
|--------------------|----|---------|---|---|---|---|---|---|
| Yalgorup<br>Member | 3A | 1392.30 | Х |   | Х | Х | Х |   |
| Wonnerup<br>Member | 3B | 1392.35 | Х | Х | Х | Х | Х | Х |

# SPECIAL CORE ANALYSIS (SCAL) TEST SCHEDULE SUMMARY

(Sorted by well and depth)

| Stratigraphic | Sample | Depth | CT-Scan |       | Perme        | ability, | Grain   | Supercriti | cal CO2- |
|---------------|--------|-------|---------|-------|--------------|----------|---------|------------|----------|
| Unit          | no.    | (m)   | Pre-    | Post- | and Porosity |          | Density | Water      | Krel     |
|               |        |       | Test    | Test  | at at        |          |         | SS Full-   | USS      |
|               |        |       |         |       | ambient      | NOBP     |         | Curve      | End-     |
|               |        |       |         |       |              |          |         |            | Points   |

#### Well : DMP Harvey-3

| Wonnerup<br>Member | 1A | 1427.47 | Х | Х | Х | Х | Х | Х |  |
|--------------------|----|---------|---|---|---|---|---|---|--|
| Wonnerup<br>Member | 1B | 1427.52 | Х |   | Х | Х | Х |   |  |
| Wonnerup<br>Member | 2A | 1440.90 | Х |   | Х | Х | Х |   |  |
| Wonnerup<br>Member | 2B | 1440.95 | Х |   | Х | Х | Х |   |  |

| Wonnerup<br>Member | 5B | 1666.28 | Х |   | Х | Х | Х |   |  |
|--------------------|----|---------|---|---|---|---|---|---|--|
| Wonnerup<br>Member | 5A | 1666.33 | Х |   | Х | Х | Х |   |  |
| Wonnerup<br>Member | 6B | 1794.27 | Х | Х | Х | Х | Х | Х |  |
| Wonnerup<br>Member | 6A | 1794.30 | Х |   | Х | Х | Х |   |  |

# POROSITY, PERMEABILITY, and GRAIN DENSITY

(Sorted by well and depth)

| _             |        |       | At An        | nbient (80 | 00 psi)  | At N  | OBP)         |      |      |          |         |
|---------------|--------|-------|--------------|------------|----------|-------|--------------|------|------|----------|---------|
| Stratigraphic | Sample | Depth | Permeability |            | Porosity | NOBP  | Permeability |      |      | Porosity | Grain   |
| Unit          | no.    | (m)   | Kinf         | Kair       | (%)      | (psi) | Kinf         | Kair | SS   | (%)      | Density |
|               |        |       | (md)         | (md)       |          |       | (md)         | (md) | Kair |          | (g/cc)  |
|               |        |       |              |            |          |       |              |      | (md) |          |         |

| Wonnerup<br>Member | 7A  | 1911.84 | 0.698 | 1.04  | 11.1 | 2000 | 0.559 | 0.838 | - | 10.7 | 2.63 |
|--------------------|-----|---------|-------|-------|------|------|-------|-------|---|------|------|
| Wonnerup<br>Member | 8A  | 1919.86 | 1.81  | 2.50  | 12.9 | 2000 | 1.57  | 2.16  | - | 12.6 | 2.63 |
| Wonnerup<br>Member | 7B  | 1911.89 | 0.791 | 1.15  | 11.1 | 2000 | 0.632 | 0.933 | - | 10.8 | 2.63 |
| Wonnerup<br>Member | 8B  | 1919.90 | 2.31  | 3.10  | 12.9 | 2000 | 1.98  | 2.64  | - | 12.6 | 2.63 |
| Wonnerup<br>Member | 9A  | 2491.72 | 399   | 425   | 14.7 | 2600 | 375   | 399   | - | 14.3 | 2.63 |
| Wonnerup<br>Member | 9B  | 2491.78 | 243   | 274   | 13.9 | 2600 | 227   | 257   | - | 13.5 | 2.64 |
| Wonnerup<br>Member | 10A | 2508.63 | 8.59  | 1.21  | 12.8 | 2600 | 6.13  | 8.03  | - | 12.2 | 2.65 |
| Wonnerup<br>Member | 10B | 2508.67 | 12.7  | 15.6  | 14.6 | 2600 | 10.4  | 13.1  | - | 14.0 | 2.64 |
| Wonnerup<br>Member | 14A | 2517.76 | 0.069 | 0.116 | 8.2  | 2600 | 0.046 | 0.063 | - | 8.0  | 2.68 |
| Wonnerup<br>Member | 15A | 2518.42 | 0.399 | 0.534 | 10.7 | 2600 | 0.340 | 0.390 | - | 10.3 | 2.68 |

# POROSITY, PERMEABILITY, and GRAIN DENSITY

(Sorted by well and depth)

| _             |        |       | At An | At Ambient (800 psi) |          |       | At Net Overburden Pressure (NOBP) |           |      |          |         |
|---------------|--------|-------|-------|----------------------|----------|-------|-----------------------------------|-----------|------|----------|---------|
| Stratigraphic | Sample | Depth | Perme | ability              | Porosity | NOBP  | Р                                 | ermeabili | ity  | Porosity | Grain   |
| Unit          | no.    | (m)   | Kinf  | Kair                 | (%)      | (psi) | Kinf                              | Kair      | SS   | (%)      | Density |
|               |        |       | (md)  | (md)                 |          |       | (md)                              | (md)      | Kair |          | (g/cc)  |
|               |        |       |       |                      |          |       |                                   |           | (md) |          |         |

# Well : DMP Harvey-1

| Wonnerup<br>Member | 11A | 2522.54 | 21.2 | 24.2 | 13.7 | 2600 | 19.2 | 22.0 | - | 13.3 | 2.64 |
|--------------------|-----|---------|------|------|------|------|------|------|---|------|------|
| Wonnerup<br>Member | 11B | 2522.59 | 21.0 | 23.9 | 14.5 | 2600 | 19.3 | 21.8 | - | 14.1 | 2.65 |
| Wonnerup<br>Member | 12A | 2528.07 | 47.3 | 54.1 | 12.9 | 2600 | 45.1 | 50.7 | - | 12.4 | 2.65 |
| Wonnerup<br>Member | 12B | 2528.12 | 98.3 | 118  | 13.0 | 2600 | 94.2 | 112  | - | 12.6 | 2.65 |
| Wonnerup<br>Member | 13A | 2530.03 | 99.9 | 112  | 14.0 | 2600 | 91.2 | 104  | - | 13.5 | 2.64 |
| Wonnerup<br>Member | 13B | 2530.07 | 9.58 | 11.2 | 13.0 | 2600 | 8.82 | 10.3 | - | 12.6 | 2.66 |

| Yalgorup<br>Member | 4A | 1369.84 | 116  | 127  | 22.2 | 1250 | 106  | 114  | - | 21.8 | 2.64 |
|--------------------|----|---------|------|------|------|------|------|------|---|------|------|
| Yalgorup<br>Member | 3A | 1392.30 | 31.9 | 38.1 | 16.2 | 1250 | 17.8 | 22.0 | - | 15.7 | 2.65 |
| Yalgorup<br>Member | 3B | 1392.35 | 11.0 | 13.0 | 14.6 | 1250 | 6.19 | 7.23 | - | 14.2 | 2.64 |

# POROSITY, PERMEABILITY, and GRAIN DENSITY

(Sorted by well and depth)

| _             |        |       | At An | At Ambient (800 psi) |          |       | At Net Overburden Pressure (NOBP) |           |      |          |         |
|---------------|--------|-------|-------|----------------------|----------|-------|-----------------------------------|-----------|------|----------|---------|
| Stratigraphic | Sample | Depth | Perme | ability              | Porosity | NOBP  | Р                                 | ermeabili | ity  | Porosity | Grain   |
| Unit          | no.    | (m)   | Kinf  | Kair                 | (%)      | (psi) | Kinf                              | Kair      | SS   | (%)      | Density |
|               |        |       | (md)  | (md)                 |          |       | (md)                              | (md)      | Kair |          | (g/cc)  |
|               |        |       |       |                      |          |       |                                   |           | (md) |          |         |

Well : DMP Harvey-3

| Wonnerup<br>Member | 1A | 1427.47 | 271 | 400 | 23.8 | 1700 | 180 | 269 | - | 23.1 | 2.63 |
|--------------------|----|---------|-----|-----|------|------|-----|-----|---|------|------|
| Wonnerup<br>Member | 1B | 1427.52 | 408 | 584 | 23.9 | 1700 | 347 | 497 | - | 23.3 | 2.63 |
| Wonnerup<br>Member | 2A | 1440.90 | 363 | 411 | 19.8 | 1700 | 335 | 381 | - | 19.5 | 2.63 |
| Wonnerup<br>Member | 2B | 1440.95 | 222 | 282 | 20.3 | 1700 | 201 | 256 | - | 19.9 | 2.64 |

| Wonnerup<br>Member | 5B | 1666.28 | 6460 | 6870 | 24.2 | 1700 | 5890 | 6490 | 7380 | 23.8 | 2.63 |
|--------------------|----|---------|------|------|------|------|------|------|------|------|------|
| Wonnerup<br>Member | 5A | 1666.33 | 7090 | 7150 | 24.1 | 1700 | 6240 | 6600 | 6760 | 23.6 | 2.63 |
| Wonnerup<br>Member | 6B | 1794.27 | 1160 | 1500 | 22.5 | 1700 | 1120 | 1360 | 1660 | 21.9 | 2.63 |
| Wonnerup<br>Member | 6A | 1794.30 | 516  | 686  | 21.1 | 1700 | 412  | 545  | -    | 20.6 | 2.64 |

### **CO<sub>2</sub> - WATER RELATIVE PERMEABILITY**

Steady State Method Extracted State Samples Net Confining Stress : Various Temperature : Various

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|                    |          |               |           | Initial C   | onditions    | Te          | erminal Condit       | ions                  |         |           |
|--------------------|----------|---------------|-----------|-------------|--------------|-------------|----------------------|-----------------------|---------|-----------|
|                    |          |               |           | Water       | Specific     | Water       | Effective            | Relative              | Water F | lecovery, |
|                    | Sample   | Klinkenberg   |           | Saturation, | Permeability | Saturation, | Permeability         | Permeability          | frac    | ction     |
| Sample             | Depth,   | Permeability, | Porosity, | fraction    | to Brine,    | fraction    | to CO <sub>2</sub> , | to CO <sub>2</sub> *, | pore    | water in  |
| Number             | meters   | millidarcies  | fraction  | pore space  | millidarcies | pore space  | millidarcies         | fraction              | space   | place     |
| Well: DMP Harvey-1 |          |               |           |             |              |             |                      |                       |         |           |
| 7A                 | 1911.84  | 0.559         | 0.107     | 1.00        | 0.266        | 0.558       | 0.0737               | 0.277                 | 0.442   | 0.442     |
| 15A                | 2518.42  | 0.340         | 0.103     | 1.00        | 0.206        | 0.611       | 0.0143               | 0.0692                | 0.389   | 0.389     |
| 12A                | 2528.07  | 45.1          | 0.124     | 1.00        | 15.8         | 0.533       | 2.60                 | 0.164                 | 0.467   | 0.467     |
| 13A                | 2530.03  | 91.2          | 0.135     | 1.00        | 18.6         | 0.433       | 3.07                 | 0.165                 | 0.567   | 0.567     |
| Well: DMP          | Harvey-3 |               |           |             |              |             |                      |                       |         |           |
| 1A                 | 1427.47  | 180           | 0.231     | 1.00        | 94.9         | 0.539       | 7.90                 | 0.0832                | 0.461   | 0.461     |
| Well: DMP          | Harvey-4 |               |           |             |              |             |                      |                       |         |           |
| 6B                 | 1794.27  | 1120          | 0.219     | 1.00        | 258          | 0.422       | 22.4                 | 0.0868                | 0.578   | 0.578     |

\* Relative to the Specific Permeability to Brine

#### WATER - CO<sub>2</sub> RELATIVE PERMEABILITY

Steady State Method Extracted State Samples Net Confining Stress : Various Temperature : Various

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|           |                    |               |           | Initial C   | onditions            | Te              | erminal Condit | ions         |                    |          |  |
|-----------|--------------------|---------------|-----------|-------------|----------------------|-----------------|----------------|--------------|--------------------|----------|--|
|           |                    |               |           | Water       | Effective            | CO <sub>2</sub> | Effective      | Relative     | CO <sub>2</sub> Re | ecovery, |  |
|           | Sample             | Klinkenberg   |           | Saturation, | Permeability         | Saturation,     | Permeability   | Permeability | frac               | ction    |  |
| Sample    | Depth,             | Permeability, | Porosity, | fraction    | to CO <sub>2</sub> , | fraction        | to Water,      | to Water*,   | pore               | gas in   |  |
| Number    | meters             | millidarcies  | fraction  | pore space  | millidarcies         | pore space      | millidarcies   | fraction     | space              | place    |  |
| Well: DMP | Well: DMP Harvey-1 |               |           |             |                      |                 |                |              |                    |          |  |
| 7A        | 1911.84            | 0.559         | 0.107     | 0.558       | 0.0737               | 0.238           | 0.0415         | 0.156        | 0.204              | 0.461    |  |
| 15A       | 2518.42            | 0.34          | 0.103     | 0.611       | 0.0143               | 0.222           | 0.0278         | 0.135        | 0.167              | 0.429    |  |
| 12A       | 2528.07            | 45.1          | 0.124     | 0.533       | 2.60                 | 0.234           | 2.03           | 0.128        | 0.233              | 0.498    |  |
| 13A       | 2530.03            | 91.2          | 0.135     | 0.433       | 3.07                 | 0.298           | 1.86           | 0.100        | 0.270              | 0.475    |  |
| Well: DMP | Harvey-3           |               |           |             |                      |                 |                |              |                    |          |  |
| 1A        | 1427.47            | 180           | 0.231     | 0.539       | 7.90                 | 0.137           | 14.8           | 0.156        | 0.325              | 0.704    |  |
| Well: DMP | Harvey-4           |               |           |             |                      |                 |                |              |                    |          |  |
| 6B        | 1794.27            | 1120          | 0.219     | 0.422       | 22.4                 | 0.258           | 12.4           | 0.0481       | 0.320              | 0.553    |  |

\* Relative to the Specific Permeability to Brine

# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress : 2000 psi Temperature : 58°C

| Well : | DMP Harvey-1 |
|--------|--------------|
|--------|--------------|

| Sample Number :                      | 7A      |
|--------------------------------------|---------|
| Sample Depth, meters :               | 1911.84 |
| Klinkenberg Permeability, md :       | 0.559   |
| Porosity, fraction :                 | 0.107   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 0.266   |

|                 | CO <sub>2</sub> -Water |                                |             | Fractional           |
|-----------------|------------------------|--------------------------------|-------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative P                     | ermeability | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,          | to Water*,  | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                       | fraction    | fCO <sub>2</sub>     |
|                 |                        |                                | •           | •                    |
|                 | C                      | O <sub>2</sub> Displacing Wate | r           |                      |
| 0.000           |                        |                                | 1 00        |                      |
| 0.000           | -                      | -                              | 0.265       | - 0 1/2              |
| 0.100           | 0.0104                 | 0.00407                        | 0.205       | 0.145                |
| 0.222           | 0.0555                 | 0.0106                         | 0.195       | 0.335                |
| 0.276           | 0.260                  | 0.0287                         | 0.111       | 0.702                |
| 0.332           | 1.25                   | 0.0682                         | 0.0545      | 0.919                |
| 0.417           | 13.9                   | 0.212                          | 0.0153      | 0.992                |
| 0.442           | -                      | 0.277                          | -           | 1.00                 |
|                 |                        |                                |             |                      |
|                 | v                      | Vater Displacing CO            | 2           |                      |
| 0 442           | _                      | 0 277                          | _           | 1 00                 |
| 0.442           | 12 5                   | 0.277                          | 0 0127      | 0.002                |
| 0.410           | 13.5                   | 0.104                          | 0.0137      | 0.992                |
| 0.338           | 1.33                   | 0.0596                         | 0.0447      | 0.924                |
| 0.293           | 0.266                  | 0.0230                         | 0.0866      | 0.707                |
| 0.262           | 0.0525                 | 0.00634                        | 0.121       | 0.323                |
| 0.247           | 0.0176                 | 0.00249                        | 0.142       | 0.137                |
| 0.238           | -                      | -                              | 0.156       | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Temperature : 58°C Net Confining Stress: 2000 psi

| Well: D | MP Harvey-1 |
|---------|-------------|
|---------|-------------|

- Sample Number : 7A
- Sample Depth, meters : 1911.84 Klinkenberg Permeability, md : 0.559
  - Porosity, fraction : 0.107
- Initial Water Saturation, fraction : 1.00
- Specific Permeability to Water, md : 0.266



Steady State Method Extracted State Sample

Net Confining Stress: 2600 psi Temperature: 70°C

| Sample Number :                      | 15A     |
|--------------------------------------|---------|
| Sample Depth, meters :               | 2518.42 |
| Klinkenberg Permeability, md :       | 0.340   |
| Porosity, fraction :                 | 0.103   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 0.206   |

Well: DMP Harvey-1

| CO <sub>2</sub><br>Saturation,<br>fraction Vp | CO₂-Water<br>Relative<br>Permeability<br>Ratio | Relative P<br>to CO <sub>2</sub> *,<br>fraction | ermeability<br>to Water*,<br>fraction | Fractional<br>Flow<br>of CO <sub>2</sub> ,<br>fCO <sub>2</sub> |
|-----------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------------------------------------|
|                                               | C                                              | O <sub>2</sub> Displacing Water                 | r                                     |                                                                |
| 0.000                                         | -                                              | -                                               | 1.00                                  | -                                                              |
| 0.203                                         | 0.0158                                         | 0.00289                                         | 0.183                                 | 0.103                                                          |
| 0.235                                         | 0.0485                                         | 0.00618                                         | 0.127                                 | 0.260                                                          |
| 0.288                                         | 0.258                                          | 0.0159                                          | 0.0615                                | 0.652                                                          |
| 0.328                                         | 1.22                                           | 0.0301                                          | 0.0248                                | 0.898                                                          |
| 0.371                                         | 13.4                                           | 0.0542                                          | 0.00405                               | 0.990                                                          |
| 0.389                                         | -                                              | 0.0692                                          | -                                     | 1.00                                                           |
| Water Displacing CO <sub>2</sub>              |                                                |                                                 |                                       |                                                                |

| 0.389 | -      | 0.0692  | -       | 1.00  |
|-------|--------|---------|---------|-------|
| 0.368 | 13.5   | 0.0483  | 0.00358 | 0.990 |
| 0.331 | 1.22   | 0.0252  | 0.0206  | 0.899 |
| 0.294 | 0.262  | 0.0131  | 0.0500  | 0.655 |
| 0.254 | 0.0490 | 0.00439 | 0.0895  | 0.262 |
| 0.233 | 0.0160 | 0.00191 | 0.120   | 0.104 |
| 0.222 | -      | -       | 0.135   | -     |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 70°C

| Well : DMP Harvey-1<br>Ir<br>Spec                                                                                                                                                                                                                                                                  | Sample Number :15ASample Depth, meters :2518.42Klinkenberg Permeability, md :0.340Porosity, fraction :0.103nitial Water Saturation, fraction :1.00cific Permeability to Water, md :0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.5<br>0.4<br>0.4<br>0.4<br>0.2<br>0.4<br>0.2<br>0.1<br>0.2<br>0.0<br>0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.5<br>0.4<br>0.7<br>0.4<br>0.5<br>0.4<br>0.2<br>0.1<br>0.5<br>0.5<br>0.4<br>0.2<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 0.01<br>0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br>Sg, fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7<br>0.8<br>0.9<br>1.0<br>Sq. fraction                                                                                                                               | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 |

Well: DMP Harvey-1

# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 70°C

| Sample Number :                      | 12A     |
|--------------------------------------|---------|
| Sample Depth, meters :               | 2528.07 |
| Klinkenberg Permeability, md :       | 45.1    |
| Porosity, fraction :                 | 0.124   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 15.8    |

|                 | CO <sub>2</sub> -Water |                                |              | Fractional           |
|-----------------|------------------------|--------------------------------|--------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative P                     | Permeability | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,          | to Water*,   | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                       | fraction     | fCO <sub>2</sub>     |
|                 |                        |                                |              |                      |
|                 | C                      | O <sub>2</sub> Displacing Wate | r            |                      |
| 0.000           | _                      | _                              | 1 00         | _                    |
| 0.000           | 0.0175                 | 0 00251                        | 0 143        | 0 113                |
| 0.264           | 0.0173                 | 0.00201                        | 0.143        | 0.113                |
| 0.204           | 0.0020                 | 0.00044                        | 0.105        | 0.657                |
| 0.301           | 1 31                   | 0.0140                         | 0.0002       | 0.007                |
| 0.333           | 13.2                   | 0.0502                         | 0.0250       | 0.900                |
| 0.352           | 15.2                   | 0.0075                         | 0.00314      | 1.00                 |
| 0.407           | -                      | 0.104                          | -            | 1.00                 |
|                 | v                      | Vater Displacing CO            | 2            |                      |
|                 |                        |                                |              |                      |
| 0.467           | -                      | 0.164                          | -            | 1.00                 |
| 0.390           | 13.2                   | 0.0599                         | 0.00453      | 0.990                |
| 0.340           | 1.32                   | 0.0247                         | 0.0188       | 0.905                |
| 0.304           | 0.264                  | 0.0111                         | 0.0422       | 0.657                |
| 0.277           | 0.0530                 | 0.00365                        | 0.0689       | 0.278                |
| 0.258           | 0.0176                 | 0.00163                        | 0.0923       | 0.113                |
| 0.234           | -                      | -                              | 0.128        | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 70°C

| Well : | DMP | Harvey-1 |
|--------|-----|----------|
|--------|-----|----------|

| Sample Number :        | 12A     |
|------------------------|---------|
| Sample Depth, meters : | 2528.07 |

- Klinkenberg Permeability, md : 45.1
  - Porosity, fraction : 0.124
- Initial Water Saturation, fraction : 1.00

Specific Permeability to Water, md : 15.8



# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 71°C

|                    | Sample Number :                      | 13A     |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-1 | Sample Depth, meters :               | 2530.03 |
|                    | Klinkenberg Permeability, md :       | 91.2    |
|                    | Porosity, fraction :                 | 0.135   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 18.6    |

|                 | CO <sub>2</sub> -Water |                                |             | Fractional           |
|-----------------|------------------------|--------------------------------|-------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative P                     | ermeability | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,          | to Water*,  | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                       | fraction    | fCO <sub>2</sub>     |
|                 |                        |                                | •           |                      |
|                 | C                      | O <sub>2</sub> Displacing Wate | r           |                      |
| 0.000           | _                      | _                              | 1 00        | _                    |
| 0.000           | 0 0282                 | 0.00475                        | 0.168       | - 0 170              |
| 0.240           | 0.0202                 | 0.00473                        | 0.100       | 0.170                |
| 0.230           | 0.0043                 | 0.00304                        | 0.117       | 0.300                |
| 0.372           | 0.422                  | 0.0240                         | 0.0002      | 0.754                |
| 0.445           | 2.11                   | 0.0539                         | 0.0256      | 0.939                |
| 0.527           | 20.8                   | 0.119                          | 0.00571     | 0.993                |
| 0.567           | -                      | 0.165                          | -           | 1.00                 |
|                 | V                      | Votor Diamlasing CO            |             |                      |
|                 | V                      | vater Displacing CO            | 2           |                      |
| 0.567           | -                      | 0.165                          | -           | 1.00                 |
| 0.527           | 20.8                   | 0.103                          | 0.00497     | 0.993                |
| 0.452           | 2.11                   | 0.0414                         | 0.0196      | 0.939                |
| 0.390           | 0.423                  | 0.0179                         | 0.0423      | 0.754                |
| 0.342           | 0.0846                 | 0.00576                        | 0.0681      | 0.380                |
| 0.310           | 0.0284                 | 0.00255                        | 0.0001      | 0 171                |
| 0.010           | 0.0204                 | 0.00200                        | 0.0300      | 0.171                |
| 0.290           | -                      | -                              | 0.100       | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 71°C

Well: DMP Harvey-1

| Sample Number :                | 13A     |
|--------------------------------|---------|
| Sample Depth, meters :         | 2530.03 |
| Klinkenberg Permeability, md : | 91.2    |
| Porosity, fraction :           | 0.135   |

Initial Water Saturation, fraction : 1.00

Specific Permeability to Water, md : 18.6



# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress: 1700 psi Temperature: 48°C

|                    | Sample Number :                      | 1A      |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-3 | Sample Depth, meters :               | 1427.47 |
|                    | Klinkenberg Permeability, md :       | 180.    |
|                    | Porosity, fraction :                 | 0.231   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 94.9    |

|                          |                                  | CO <sub>2</sub> -Water |                       |            | Fractional           |  |  |  |  |  |  |
|--------------------------|----------------------------------|------------------------|-----------------------|------------|----------------------|--|--|--|--|--|--|
| CO <sub>2</sub> Relative |                                  |                        | Relative P            | Flow       |                      |  |  |  |  |  |  |
|                          | Saturation,                      | Permeability           | to CO <sub>2</sub> *, | to Water*, | of CO <sub>2</sub> , |  |  |  |  |  |  |
|                          | fraction Vp                      | Ratio                  | fraction              | fraction   | fCO <sub>2</sub>     |  |  |  |  |  |  |
|                          |                                  |                        |                       | _          |                      |  |  |  |  |  |  |
|                          | CO <sub>2</sub> Displacing water |                        |                       |            |                      |  |  |  |  |  |  |
|                          | 0.000                            | -                      | -                     | 1.00       | -                    |  |  |  |  |  |  |
|                          | 0.171                            | 0.0118                 | 0.00154               | 0.131      | 0.117                |  |  |  |  |  |  |
|                          | 0.207 0.0355                     |                        | 0.00307 0.0864        |            | 0.286                |  |  |  |  |  |  |
|                          | 0.263 0.177                      |                        | 0.00781 0.0440        |            | 0.667                |  |  |  |  |  |  |
|                          | 0.318                            | 0.318 0.888            |                       | 0.0196     | 0.909                |  |  |  |  |  |  |
|                          | 0.389                            | 0.389 8.87             |                       | 0.00444    | 0.990                |  |  |  |  |  |  |
|                          | 0.461                            | -                      | 0.0832 -              |            | 1.00                 |  |  |  |  |  |  |
|                          |                                  |                        |                       |            |                      |  |  |  |  |  |  |
|                          |                                  | v                      | Vater Displacing CO   | 2          |                      |  |  |  |  |  |  |
|                          | 0.461                            | -                      | 0.0832                | -          | 1.00                 |  |  |  |  |  |  |
|                          | 0.386                            | 8.88                   | 0.0335                | 0.00378    | 0.990                |  |  |  |  |  |  |
|                          | 0.318                            | 0.890                  | 0.0132                | 0.0148     | 0.909                |  |  |  |  |  |  |
|                          | 0.267                            | 0.179                  | 0.00605               | 0.0339     | 0.668                |  |  |  |  |  |  |
|                          | 0.221                            | 0.0356                 | 0.00218               | 0.0613     | 0.286                |  |  |  |  |  |  |
|                          | 0.190                            | 0.0118                 | 0.00106               | 0.0897     | 0.117                |  |  |  |  |  |  |
|                          | 0.137                            | -                      | _                     | 0.156      | -                    |  |  |  |  |  |  |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature : 48°C

|--|

| Sample Number :                      | 1A      |
|--------------------------------------|---------|
| Sample Depth, meters :               | 1427.47 |
| Klinkenberg Permeability, md :       | 180.    |
| Porosity, fraction :                 | 0.231   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 94.9    |

100 1.0 0.9 0.8 10 Relative Permeability Ratio 0.7 0.6 fraction 0.5 ج ب 0.4 0.3 Krw 0.2 KrCO<sub>2</sub> 0.1 0.0 0.001 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Sg, fraction Sg, fraction 1.0 0.9 Krw 0.8 fCO<sub>2</sub> 0.7



# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress: 1700 psi Temperature: 56°C

|                    | Sample Number :                      | 6B      |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-4 | Sample Depth, meters :               | 1794.27 |
|                    | Klinkenberg Permeability, md :       | 1120.   |
|                    | Porosity, fraction :                 | 0.219   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 258.    |

|              |                                  | CO <sub>2</sub> -Water |                       |            | Fractional           |  |  |  |  |  |  |
|--------------|----------------------------------|------------------------|-----------------------|------------|----------------------|--|--|--|--|--|--|
|              | CO <sub>2</sub>                  | Relative               | ermeability           | Flow       |                      |  |  |  |  |  |  |
|              | Saturation, Permeability         |                        | to CO <sub>2</sub> *, | to Water*, | of CO <sub>2</sub> , |  |  |  |  |  |  |
|              | fraction Vp                      | Ratio                  | fraction              | fraction   | fCO <sub>2</sub>     |  |  |  |  |  |  |
|              |                                  |                        |                       |            |                      |  |  |  |  |  |  |
|              | CO <sub>2</sub> Displacing Water |                        |                       |            |                      |  |  |  |  |  |  |
|              | 0.000 1.00 -                     |                        |                       |            |                      |  |  |  |  |  |  |
|              | 0.244                            | 0.0128                 | 0.000944              | 0.0738     | 0.107                |  |  |  |  |  |  |
| 0.277 0.0385 |                                  |                        | 0.00186               | 0.0483     | 0.265                |  |  |  |  |  |  |
|              | 0.334                            | 0.193                  | 0.00466               | 0.643      |                      |  |  |  |  |  |  |
|              | 0.395                            | 0.965                  | 0.0115                | 0.900      |                      |  |  |  |  |  |  |
|              | 0.484                            | 0.484 9.64             |                       | 0.00352    | 0.989                |  |  |  |  |  |  |
|              | 0.578 -                          |                        | 0.0868 -              |            | 1.00                 |  |  |  |  |  |  |
|              |                                  |                        |                       |            |                      |  |  |  |  |  |  |
|              |                                  | v                      | Vater Displacing CO   | 2          |                      |  |  |  |  |  |  |
|              | 0 578                            | _                      | 0 0868                | _          | 1 00                 |  |  |  |  |  |  |
|              | 0 491                            | 9 64                   | 0.0265                | 0 00275    | 0.989                |  |  |  |  |  |  |
|              | 0 401                            | 0.967                  | 0.00890               | 0.00920    | 0.900                |  |  |  |  |  |  |
|              | 0.342                            | 0.193                  | 0.00354               | 0.0184     | 0.643                |  |  |  |  |  |  |
|              | 0.305                            | 0.0385                 | 0.00113               | 0.0292     | 0.265                |  |  |  |  |  |  |
|              | 0.284                            | 0.0128                 | 0.000479              | 0.0374     | 0.107                |  |  |  |  |  |  |
|              | 0.258                            | -                      | -                     | 0.0481     | -                    |  |  |  |  |  |  |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature : 56°C

|                    | Sample Number :                      | 6B      |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-4 | Sample Depth, meters :               | 1794.27 |
|                    | Klinkenberg Permeability, md :       | 1120.   |
|                    | Porosity, fraction :                 | 0.219   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 258.    |



#### **BASIC PROPERTIES OF TEST SAMPLES**

| Sampla              | Donth        | Net Confining | Permeability,<br>millidarciesPorosity,<br>fractionKlinkenbergKair |       | Deresity  | Grain    |  |  |  |
|---------------------|--------------|---------------|-------------------------------------------------------------------|-------|-----------|----------|--|--|--|
| Sample              | Depth,       | Stress,       |                                                                   |       | Porosity, | Density, |  |  |  |
| Number              | meters       | psi           |                                                                   |       | g/cm°     |          |  |  |  |
|                     |              |               |                                                                   |       |           |          |  |  |  |
| Well : DMP Harvey-1 |              |               |                                                                   |       |           |          |  |  |  |
| 7A                  | 1911.84 2000 |               | 0.559                                                             | 0.838 | 0.107     | 2.63     |  |  |  |
| 15A                 | 2518.42      | 2600          | 0.340                                                             | 0.390 | 0.103     | 2.684    |  |  |  |
| 12A                 | 2528.07      | 2600          | 45.1                                                              | 50.7  | 0.124     | 2.651    |  |  |  |
| 13A                 | 2530.03      | 2600          | 91.2                                                              | 104   | 0.135     | 2.641    |  |  |  |
| Well: DMP H         | larvey-3     |               |                                                                   |       |           |          |  |  |  |
| 1A                  | 1427.47      | 1700          | 180                                                               | 269   | 0.231     | 2.631    |  |  |  |
| Well: DMP H         | larvey-4     |               |                                                                   |       |           |          |  |  |  |
| 6B                  | 1794.27      | 1700          | 1120                                                              | 1360  | 0.219     | 2.63     |  |  |  |

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

#### SUMMARY OF SAMPLE PARAMETERS

| Sample<br>Number   | Depth,<br>meters    | Net Confining<br>Stress,<br>psi | Length,<br>cm | Area,<br>cm² | Pore<br>Volume,<br>cm <sup>3</sup> |  |  |  |  |
|--------------------|---------------------|---------------------------------|---------------|--------------|------------------------------------|--|--|--|--|
| Well: DMP Harvey-1 |                     |                                 |               |              |                                    |  |  |  |  |
| 7A                 | 1911.84             | 2000                            | 6.20          | 11.282       | 7.478                              |  |  |  |  |
| 15A                | 2518.42             | 2600                            | 6.40          | 11.222       | 7.363                              |  |  |  |  |
| 12A                | 2528.07             | 2600                            | 5.11          | 11.222       | 7.091                              |  |  |  |  |
| 13A                | 2530.03             | 2600                            | 6.02          | 11.222       | 9.070                              |  |  |  |  |
| Well: DMP Ha       | Well : DMP Harvey-3 |                                 |               |              |                                    |  |  |  |  |
| 1A                 | 1427.47             | 1700                            | 6.08          | 10.752       | 14.430                             |  |  |  |  |
| Well: DMP Ha       | arvey-4             |                                 |               |              |                                    |  |  |  |  |
| 6B                 | 1794.27             | 1700                            | 6.72          | 11.252       | 16.046                             |  |  |  |  |

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

# TAGGED SYNTHETIC FORMATION BRINE

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|                    | Constituent                             | Concentration,<br>g/L |
|--------------------|-----------------------------------------|-----------------------|
|                    |                                         |                       |
| Sodium Chloride    | (NaCl)                                  | 11.538                |
| Calcium Chloride   | (CaCl <sub>2</sub> * 2H <sub>2</sub> O) | 5.000                 |
| Magnesium Chloride | (MgCl <sub>2</sub> *6H <sub>2</sub> O)  | 2.500                 |
| Potassium Chloride | (KCI)                                   | 2.500                 |
| Sodium Iodide*     | (Nal)                                   | 73.000                |

\* 73.000 g/L Nal replaces 28.462 g/L NaCl when tagging brine for x-ray saturation monitoring

#### SUMMARY OF FLUID PARAMETERS

| Fluid                            | Temperature,<br>°C | Viscosity,<br>centipoise | Density,<br>g/cm <sup>3</sup> |
|----------------------------------|--------------------|--------------------------|-------------------------------|
|                                  |                    |                          |                               |
| Tagged Simulated Formation Brine | 48                 | 0.624                    | 1.05                          |
|                                  | 56                 | 0.548                    | 1.04                          |
|                                  | 58                 | 0.536                    | 1.04                          |
|                                  | 70                 | 0.445                    | 1.02                          |
|                                  |                    |                          |                               |
| Carbon Dioxide                   | 48                 | 0.0554                   | 0.691                         |
|                                  | 56                 | 0.0586                   | 0.714                         |
|                                  | 58                 | 0.0590                   | 0.717                         |
|                                  | 70                 | 0.0614                   | 0.729                         |

Well : Harvey-1; Harvey-3; Harvey-4

### CO<sub>2</sub> - WATER RELATIVE PERMEABILITY

Unsteady State Method Extracted State Samples Net Confining Stress : Various psi Temperature : Various °C

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|                      |         |               |           | Initial Conditions |              | Terminal Conditions |                      |                       |         |           |
|----------------------|---------|---------------|-----------|--------------------|--------------|---------------------|----------------------|-----------------------|---------|-----------|
|                      |         |               |           | Water              | Specific     | Water               | Effective            | Relative              | Water F | lecovery, |
|                      | Sample  | Klinkenberg   |           | Saturation,        | Permeability | Saturation,         | Permeability         | Permeability          | frac    | ction     |
| Sample               | Depth,  | Permeability, | Porosity, | fraction           | to Brine,    | fraction            | to CO <sub>2</sub> , | to CO <sub>2</sub> *, | pore    | water in  |
| Number               | meters  | millidarcies  | fraction  | pore space         | millidarcies | pore space          | millidarcies         | fraction              | space   | place     |
| Well : DMP Harvey-1  |         |               |           |                    |              |                     |                      |                       |         |           |
| 7B                   | 1911.89 | 0.632         | 0.108     | 1.00               | 0.297        | 0.426               | 0.240                | 0.809                 | 0.574   | 0.574     |
| 8B                   | 1919.90 | 1.98          | 0.126     | 1.00               | 0.875        | 0.584               | 0.187                | 0.213                 | 0.416   | 0.416     |
| 9B                   | 2491.78 | 227.          | 0.135     | 1.00               | 62.7         | 0.533               | 23.5                 | 0.374                 | 0.467   | 0.467     |
| 11A                  | 2522.54 | 19.2          | 0.133     | 1.00               | 9.03         | 0.315               | 7.60                 | 0.842                 | 0.685   | 0.685     |
| Well : DMP Harvey-3A |         |               |           |                    |              |                     |                      |                       |         |           |
| 4A                   | 1369.84 | 106.          | 0.218     | 1.00               | 1.21         | 0.691               | 0.915                | 0.757                 | 0.309   | 0.309     |
| 3B                   | 1392.35 | 6.19          | 0.142     | 1.00               | 0.0758       | 0.619               | 0.0342               | 0.450                 | 0.381   | 0.381     |

\* Relative to the Specific Permeability to Brine

#### WATER - CO<sub>2</sub> RELATIVE PERMEABILITY

Unsteady State Method Extracted State Samples Net Confining Stress : Various psi Temperature : Various °C

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|                     |          |               |           | Initial Conditions |                      | Terminal Conditions |              |              |        |          |
|---------------------|----------|---------------|-----------|--------------------|----------------------|---------------------|--------------|--------------|--------|----------|
|                     |          |               |           | Water              | Effective            | CO <sub>2</sub>     | Effective    | Relative     | CO2 Re | ecovery, |
|                     | Sample   | Klinkenberg   |           | Saturation,        | Permeability         | Saturation,         | Permeability | Permeability | frac   | tion     |
| Sample              | Depth,   | Permeability, | Porosity, | fraction           | to CO <sub>2</sub> , | fraction            | to Water,    | to Water*,   | pore   | gas in   |
| Number              | meters   | millidarcies  | fraction  | pore space         | millidarcies         | pore space          | millidarcies | fraction     | space  | place    |
| Well: DMP           | Harvey-1 |               |           |                    |                      |                     |              |              |        |          |
| 7B                  | 1911.89  | 0.632         | 0.108     | 0.426              | 0.240                | 0.213               | 0.063        | 0.214        | 0.361  | 0.629    |
| 8B                  | 1919.90  | 1.98          | 0.126     | 0.584              | 0.187                | 0.172               | 0.246        | 0.282        | 0.244  | 0.586    |
| 9B                  | 2491.78  | 227.          | 0.135     | 0.533              | 23.5                 | 0.145               | 17.5         | 0.279        | 0.322  | 0.690    |
| 11A                 | 2522.54  | 19.2          | 0.133     | 0.315              | 7.60                 | 0.317               | 1.92         | 0.213        | 0.368  | 0.537    |
| Well : DMP Harvey-3 |          |               |           |                    |                      |                     |              |              |        |          |
| 4A                  | 1369.84  | 106.          | 0.218     | 0.691              | 0.915                | 0.122               | 0.716        | 0.593        | 0.187  | 0.606    |
| 3B                  | 1392.35  | 6.19          | 0.142     | 0.619              | 0.0342               | 0.201               | 0.0298       | 0.393        | 0.180  | 0.472    |

\* Relative to the Specific Permeability to Brine
#### **BASIC PROPERTIES OF TEST SAMPLES**

| Sample       | Depth,   | Net Confining<br>Stress, | Permea<br>millida    | ability,<br>rcies | Porosity, | Grain<br>Density, |
|--------------|----------|--------------------------|----------------------|-------------------|-----------|-------------------|
| Number       | meters   | psi                      | psi Klinkenberg Kair |                   | fraction  | g/cm <sup>3</sup> |
| Well : DMP H | larvey-1 |                          |                      |                   |           |                   |
| 7B           | 1911.89  | 2000                     | 0.632                | 0.933             | 0.108     | 2.63              |
| 8B           | 1919.90  | 2000                     | 1.98                 | 2.64              | 0.126     | 2.63              |
| 9B           | 2491.78  | 2600                     | 227.                 | 257.              | 0.135     | 2.64              |
| 11A          | 2522.54  | 2600                     | 19.2                 | 22.0              | 0.133     | 2.64              |
| Well: DMP H  | larvey-3 |                          |                      |                   |           |                   |
| 4A           | 1369.84  | 1250                     | 106.                 | 114.              | 0.218     | 2.64              |
| 3B           | 1392.35  | 1250                     | 6.19                 | 7.23              | 0.142     | 2.64              |

#### SUMMARY OF SAMPLE PARAMETERS

| Sample<br>Number | Depth,<br>meters | Net Confining<br>Stress,<br>psi | Length,<br>cm | Area,<br>cm² | Pore<br>Volume,<br>cm <sup>3</sup> |
|------------------|------------------|---------------------------------|---------------|--------------|------------------------------------|
| Well : DMP Ha    | arvey-1          |                                 |               |              |                                    |
| 7B               | 1911.89          | 2000                            | 6.45          | 11.28        | 7.79                               |
| 8B               | 1919.90          | 2000                            | 6.16          | 11.25        | 8.71                               |
| 9B               | 2491.78          | 2600                            | 6.40          | 11.34        | 9.73                               |
| 11A              | 2522.54          | 2600                            | 5.91          | 11.34        | 8.85                               |
| Well: DMP Ha     | arvey-3          |                                 |               |              |                                    |
| 4A               | 1369.84          | 1250                            | 6.85          | 11.04        | 16.14                              |
| 3B               | 1392.35          | 1250                            | 6.80          | 11.31        | 10.67                              |

## SYNTHETIC FORMATION BRINE

| Constituent        |                    | Concentration,<br>g/L |
|--------------------|--------------------|-----------------------|
| Sodium Chloride    | (NaCl)             | 40 000                |
| Calcium Chloride   | $(CaCl_2 * 2H_2O)$ | 5.000                 |
| Magnesium Chloride | $(MgCl_2*6H_2O)$   | 2.500                 |
| Potassium Chloride | (KCI)              | 2.500                 |

## SUMMARY OF FLUID PARAMETERS

| Fluid                     | Temperature,<br>°C | Viscosity,<br>centipoise | Density,<br>g/cm <sup>3</sup> |
|---------------------------|--------------------|--------------------------|-------------------------------|
|                           |                    |                          |                               |
| Simulated Formation Brine | 48                 | 0.630                    | 1.05                          |
|                           | 56                 | 0.624                    | 1.05                          |
|                           | 58                 | 0.536                    | 1.04                          |
|                           | 70                 | 0.453                    | 1.02                          |
|                           |                    |                          |                               |
| Carbon Dioxide            | 48                 | 0.0560                   | 0.697                         |
|                           | 56                 | 0.0554                   | 0.691                         |
|                           | 58                 | 0.0590                   | 0.717                         |
|                           | 70                 | 0.0621                   | 0.736                         |

# SPECIAL CORE ANALYSIS (SCAL) TEST SCHEDULE SUMMARY

(Sorted by well and depth)

| Stratigraphic | Sample | Depth | CT-Scan |       | Permeability, |      | Grain   | Supercritical CO2- |        |
|---------------|--------|-------|---------|-------|---------------|------|---------|--------------------|--------|
| Unit          | no.    | (m)   | Pre-    | Post- | and Porosity  |      | Density | Water              | Krel   |
|               |        |       | Test    | Test  | at at         |      |         | SS Full-           | USS    |
|               |        |       |         |       | ambient       | NOBP |         | Curve              | End-   |
|               |        |       |         |       |               |      |         |                    | Points |

#### Wonnerup 7A 1911.84 Х Х Х Х Х Х Member Wonnerup 8A Х Х Х Х 1919.86 Member Wonnerup 7B 1911.89 Х Х Х Х Х Х Member Wonnerup Х Х Х Х 8B 1919.90 Х Х Member Wonnerup 9A 2491.72 Х Х Х Х Member Wonnerup 9B Х Х Х Х Х 2491.78 Х Member Wonnerup 10A 2508.63 Х Х Х Х Member Wonnerup 10B 2508.67 Х Х Х Х Member Wonnerup 14A 2517.76 Х Х Х Х Member Wonnerup 15A 2518.42 Х Х Х Х Х Х Member Wonnerup 11A 2522.54 Х Х Х Х Х Х Member Wonnerup 11B 2522.59 Х Х Х Х Member Wonnerup 12A 2528.07 Х Х Х Х Х Х Member Wonnerup 12B 2528.12 Х Х Х Х Member Wonnerup Х 13A 2530.03 Х Х Х Х Х Member Wonnerup 2530.07 Х Х Х Х 13B Member

#### Well : DMP Harvey-1

| Yalgorup<br>Member | 4A | 1369.84 | Х | Х | Х | Х | Х | Х |
|--------------------|----|---------|---|---|---|---|---|---|
| Yalgorup<br>Member | 3A | 1392.30 | Х |   | Х | Х | Х |   |
| Wonnerup<br>Member | 3B | 1392.35 | Х | Х | Х | Х | Х | Х |

# SPECIAL CORE ANALYSIS (SCAL) TEST SCHEDULE SUMMARY

(Sorted by well and depth)

| Stratigraphic | Sample | Depth | CT-Scan |       | Permeability, |  | Grain   | Supercritical CO2 |        |
|---------------|--------|-------|---------|-------|---------------|--|---------|-------------------|--------|
| Unit          | no.    | (m)   | Pre-    | Post- | and Porosity  |  | Density | Water             | Krel   |
|               |        |       | Test    | Test  | at at         |  |         | SS Full-          | USS    |
|               |        |       |         |       | ambient NOBP  |  |         | Curve             | End-   |
|               |        |       |         |       |               |  |         |                   | Points |

# Well : DMP Harvey-3

| Wonnerup<br>Member | 1A | 1427.47 | Х | Х | Х | Х | Х | Х |  |
|--------------------|----|---------|---|---|---|---|---|---|--|
| Wonnerup<br>Member | 1B | 1427.52 | Х |   | Х | Х | Х |   |  |
| Wonnerup<br>Member | 2A | 1440.90 | Х |   | Х | Х | Х |   |  |
| Wonnerup<br>Member | 2B | 1440.95 | Х |   | Х | Х | Х |   |  |

| Wonnerup<br>Member | 5B | 1666.28 | Х |   | Х | Х | Х |   |  |
|--------------------|----|---------|---|---|---|---|---|---|--|
| Wonnerup<br>Member | 5A | 1666.33 | Х |   | Х | Х | Х |   |  |
| Wonnerup<br>Member | 6B | 1794.27 | Х | Х | Х | Х | Х | Х |  |
| Wonnerup<br>Member | 6A | 1794.30 | Х |   | Х | Х | Х |   |  |

# POROSITY, PERMEABILITY, and GRAIN DENSITY

(Sorted by well and depth)

| _             |        |       | At An | nbient (80   | 00 psi) | At N  | At Net Overburden Pressure (NOBP) |              |      |          |         |  |
|---------------|--------|-------|-------|--------------|---------|-------|-----------------------------------|--------------|------|----------|---------|--|
| Stratigraphic | Sample | Depth | Perme | Permeability |         | NOBP  | Р                                 | Permeability |      | Porosity | Grain   |  |
| Unit          | no.    | (m)   | Kinf  | Kair         | (%)     | (psi) | Kinf                              | Kair         | SS   | (%)      | Density |  |
|               |        |       | (md)  | (md)         |         |       | (md)                              | (md)         | Kair |          | (g/cc)  |  |
|               |        |       |       |              |         |       |                                   |              | (md) |          |         |  |

| Wonnerup<br>Member | 7A  | 1911.84 | 0.698 | 1.04  | 11.1 | 2000 | 0.559 | 0.838 | - | 10.7 | 2.63 |
|--------------------|-----|---------|-------|-------|------|------|-------|-------|---|------|------|
| Wonnerup<br>Member | 8A  | 1919.86 | 1.81  | 2.50  | 12.9 | 2000 | 1.57  | 2.16  | - | 12.6 | 2.63 |
| Wonnerup<br>Member | 7B  | 1911.89 | 0.791 | 1.15  | 11.1 | 2000 | 0.632 | 0.933 | - | 10.8 | 2.63 |
| Wonnerup<br>Member | 8B  | 1919.90 | 2.31  | 3.10  | 12.9 | 2000 | 1.98  | 2.64  | - | 12.6 | 2.63 |
| Wonnerup<br>Member | 9A  | 2491.72 | 399   | 425   | 14.7 | 2600 | 375   | 399   | - | 14.3 | 2.63 |
| Wonnerup<br>Member | 9B  | 2491.78 | 243   | 274   | 13.9 | 2600 | 227   | 257   | - | 13.5 | 2.64 |
| Wonnerup<br>Member | 10A | 2508.63 | 8.59  | 1.21  | 12.8 | 2600 | 6.13  | 8.03  | - | 12.2 | 2.65 |
| Wonnerup<br>Member | 10B | 2508.67 | 12.7  | 15.6  | 14.6 | 2600 | 10.4  | 13.1  | - | 14.0 | 2.64 |
| Wonnerup<br>Member | 14A | 2517.76 | 0.069 | 0.116 | 8.2  | 2600 | 0.046 | 0.063 | - | 8.0  | 2.68 |
| Wonnerup<br>Member | 15A | 2518.42 | 0.399 | 0.534 | 10.7 | 2600 | 0.340 | 0.390 | - | 10.3 | 2.68 |

# POROSITY, PERMEABILITY, and GRAIN DENSITY

(Sorted by well and depth)

| _             | At Ambient (800 psi) |       |       |         |          |       | At Net Overburden Pressure (NOBP) |              |      |     |         |  |
|---------------|----------------------|-------|-------|---------|----------|-------|-----------------------------------|--------------|------|-----|---------|--|
| Stratigraphic | Sample               | Depth | Perme | ability | Porosity | NOBP  | Р                                 | Permeability |      |     | Grain   |  |
| Unit          | no.                  | (m)   | Kinf  | Kair    | (%)      | (psi) | Kinf                              | Kair         | SS   | (%) | Density |  |
|               |                      |       | (md)  | (md)    |          |       | (md)                              | (md)         | Kair |     | (g/cc)  |  |
|               |                      |       |       |         |          |       |                                   |              | (md) |     |         |  |

# Well : DMP Harvey-1

| Wonnerup<br>Member | 11A | 2522.54 | 21.2 | 24.2 | 13.7 | 2600 | 19.2 | 22.0 | - | 13.3 | 2.64 |
|--------------------|-----|---------|------|------|------|------|------|------|---|------|------|
| Wonnerup<br>Member | 11B | 2522.59 | 21.0 | 23.9 | 14.5 | 2600 | 19.3 | 21.8 | - | 14.1 | 2.65 |
| Wonnerup<br>Member | 12A | 2528.07 | 47.3 | 54.1 | 12.9 | 2600 | 45.1 | 50.7 | - | 12.4 | 2.65 |
| Wonnerup<br>Member | 12B | 2528.12 | 98.3 | 118  | 13.0 | 2600 | 94.2 | 112  | - | 12.6 | 2.65 |
| Wonnerup<br>Member | 13A | 2530.03 | 99.9 | 112  | 14.0 | 2600 | 91.2 | 104  | - | 13.5 | 2.64 |
| Wonnerup<br>Member | 13B | 2530.07 | 9.58 | 11.2 | 13.0 | 2600 | 8.82 | 10.3 | - | 12.6 | 2.66 |

| Yalgorup<br>Member | 4A | 1369.84 | 116  | 127  | 22.2 | 1250 | 106  | 114  | - | 21.8 | 2.64 |
|--------------------|----|---------|------|------|------|------|------|------|---|------|------|
| Yalgorup<br>Member | 3A | 1392.30 | 31.9 | 38.1 | 16.2 | 1250 | 17.8 | 22.0 | - | 15.7 | 2.65 |
| Yalgorup<br>Member | 3B | 1392.35 | 11.0 | 13.0 | 14.6 | 1250 | 6.19 | 7.23 | - | 14.2 | 2.64 |

# POROSITY, PERMEABILITY, and GRAIN DENSITY

(Sorted by well and depth)

| _             |        |       | At An | nbient (80 | 00 psi)  | At N  | et Overbu | urden Pre | essure (N | OBP)     |         |
|---------------|--------|-------|-------|------------|----------|-------|-----------|-----------|-----------|----------|---------|
| Stratigraphic | Sample | Depth | Perme | ability    | Porosity | NOBP  | Р         | ermeabili | ity       | Porosity | Grain   |
| Unit          | no.    | (m)   | Kinf  | Kair       | (%)      | (psi) | Kinf      | Kair      | SS        | (%)      | Density |
|               |        |       | (md)  | (md)       |          |       | (md)      | (md)      | Kair      |          | (g/cc)  |
|               |        |       |       |            |          |       |           |           | (md)      |          |         |

Well : DMP Harvey-3

| Wonnerup<br>Member | 1A | 1427.47 | 271 | 400 | 23.8 | 1700 | 180 | 269 | - | 23.1 | 2.63 |
|--------------------|----|---------|-----|-----|------|------|-----|-----|---|------|------|
| Wonnerup<br>Member | 1B | 1427.52 | 408 | 584 | 23.9 | 1700 | 347 | 497 | - | 23.3 | 2.63 |
| Wonnerup<br>Member | 2A | 1440.90 | 363 | 411 | 19.8 | 1700 | 335 | 381 | - | 19.5 | 2.63 |
| Wonnerup<br>Member | 2B | 1440.95 | 222 | 282 | 20.3 | 1700 | 201 | 256 | - | 19.9 | 2.64 |

| Wonnerup<br>Member | 5B | 1666.28 | 6460 | 6870 | 24.2 | 1700 | 5890 | 6490 | 7380 | 23.8 | 2.63 |
|--------------------|----|---------|------|------|------|------|------|------|------|------|------|
| Wonnerup<br>Member | 5A | 1666.33 | 7090 | 7150 | 24.1 | 1700 | 6240 | 6600 | 6760 | 23.6 | 2.63 |
| Wonnerup<br>Member | 6B | 1794.27 | 1160 | 1500 | 22.5 | 1700 | 1120 | 1360 | 1660 | 21.9 | 2.63 |
| Wonnerup<br>Member | 6A | 1794.30 | 516  | 686  | 21.1 | 1700 | 412  | 545  | -    | 20.6 | 2.64 |

# CO<sub>2</sub> - WATER RELATIVE PERMEABILITY

Steady State Method Extracted State Samples Net Confining Stress : Various Temperature : Various

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|           |          |               |           | Initial C   | onditions    | Te          | erminal Condit       | ions                  |         |           |
|-----------|----------|---------------|-----------|-------------|--------------|-------------|----------------------|-----------------------|---------|-----------|
|           |          |               |           | Water       | Specific     | Water       | Effective            | Relative              | Water F | lecovery, |
|           | Sample   | Klinkenberg   |           | Saturation, | Permeability | Saturation, | Permeability         | Permeability          | frac    | ction     |
| Sample    | Depth,   | Permeability, | Porosity, | fraction    | to Brine,    | fraction    | to CO <sub>2</sub> , | to CO <sub>2</sub> *, | pore    | water in  |
| Number    | meters   | millidarcies  | fraction  | pore space  | millidarcies | pore space  | millidarcies         | fraction              | space   | place     |
| Well: DMP | Harvey-1 |               |           |             |              |             |                      |                       |         |           |
| 7A        | 1911.84  | 0.559         | 0.107     | 1.00        | 0.266        | 0.558       | 0.0737               | 0.277                 | 0.442   | 0.442     |
| 15A       | 2518.42  | 0.340         | 0.103     | 1.00        | 0.206        | 0.611       | 0.0143               | 0.0692                | 0.389   | 0.389     |
| 12A       | 2528.07  | 45.1          | 0.124     | 1.00        | 15.8         | 0.533       | 2.60                 | 0.164                 | 0.467   | 0.467     |
| 13A       | 2530.03  | 91.2          | 0.135     | 1.00        | 18.6         | 0.433       | 3.07                 | 0.165                 | 0.567   | 0.567     |
| Well: DMP | Harvey-3 |               |           |             |              |             |                      |                       |         |           |
| 1A        | 1427.47  | 180           | 0.231     | 1.00        | 94.9         | 0.539       | 7.90                 | 0.0832                | 0.461   | 0.461     |
| Well: DMP | Harvey-4 |               |           |             |              |             |                      |                       |         |           |
| 6B        | 1794.27  | 1120          | 0.219     | 1.00        | 258          | 0.422       | 22.4                 | 0.0868                | 0.578   | 0.578     |

\* Relative to the Specific Permeability to Brine

# WATER - CO<sub>2</sub> RELATIVE PERMEABILITY

Steady State Method Extracted State Samples Net Confining Stress : Various Temperature : Various

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|           |          |               |           | Initial C   | onditions            | Te              | erminal Condit | ions         |                    |          |
|-----------|----------|---------------|-----------|-------------|----------------------|-----------------|----------------|--------------|--------------------|----------|
|           |          |               |           | Water       | Effective            | CO <sub>2</sub> | Effective      | Relative     | CO <sub>2</sub> Re | ecovery, |
|           | Sample   | Klinkenberg   |           | Saturation, | Permeability         | Saturation,     | Permeability   | Permeability | frac               | ction    |
| Sample    | Depth,   | Permeability, | Porosity, | fraction    | to CO <sub>2</sub> , | fraction        | to Water,      | to Water*,   | pore               | gas in   |
| Number    | meters   | millidarcies  | fraction  | pore space  | millidarcies         | pore space      | millidarcies   | fraction     | space              | place    |
| Well: DMP | Harvey-1 |               |           |             |                      |                 |                |              |                    |          |
| 7A        | 1911.84  | 0.559         | 0.107     | 0.558       | 0.0737               | 0.238           | 0.0415         | 0.156        | 0.204              | 0.461    |
| 15A       | 2518.42  | 0.34          | 0.103     | 0.611       | 0.0143               | 0.222           | 0.0278         | 0.135        | 0.167              | 0.429    |
| 12A       | 2528.07  | 45.1          | 0.124     | 0.533       | 2.60                 | 0.234           | 2.03           | 0.128        | 0.233              | 0.498    |
| 13A       | 2530.03  | 91.2          | 0.135     | 0.433       | 3.07                 | 0.298           | 1.86           | 0.100        | 0.270              | 0.475    |
| Well: DMP | Harvey-3 |               |           |             |                      |                 |                |              |                    |          |
| 1A        | 1427.47  | 180           | 0.231     | 0.539       | 7.90                 | 0.137           | 14.8           | 0.156        | 0.325              | 0.704    |
| Well: DMP | Harvey-4 |               |           |             |                      |                 |                |              |                    |          |
| 6B        | 1794.27  | 1120          | 0.219     | 0.422       | 22.4                 | 0.258           | 12.4           | 0.0481       | 0.320              | 0.553    |

\* Relative to the Specific Permeability to Brine

# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress : 2000 psi Temperature : 58°C

| Well : | DMP Harvey-1 |
|--------|--------------|
|--------|--------------|

| Sample Number :                      | 7A      |
|--------------------------------------|---------|
| Sample Depth, meters :               | 1911.84 |
| Klinkenberg Permeability, md :       | 0.559   |
| Porosity, fraction :                 | 0.107   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 0.266   |

|                 | CO <sub>2</sub> -Water |                                |             | Fractional           |
|-----------------|------------------------|--------------------------------|-------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative P                     | ermeability | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,          | to Water*,  | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                       | fraction    | fCO <sub>2</sub>     |
|                 |                        |                                | •           | •                    |
|                 | C                      | O <sub>2</sub> Displacing Wate | r           |                      |
| 0.000           |                        |                                | 1 00        |                      |
| 0.000           | -                      | -                              | 0.265       | - 0 1/2              |
| 0.100           | 0.0104                 | 0.00407                        | 0.205       | 0.145                |
| 0.222           | 0.0555                 | 0.0106                         | 0.195       | 0.335                |
| 0.276           | 0.260                  | 0.0287                         | 0.111       | 0.702                |
| 0.332           | 1.25                   | 0.0682                         | 0.0545      | 0.919                |
| 0.417           | 13.9                   | 0.212                          | 0.0153      | 0.992                |
| 0.442           | -                      | 0.277                          | -           | 1.00                 |
|                 |                        |                                |             |                      |
|                 | v                      | Vater Displacing CO            | 2           |                      |
| 0 442           | _                      | 0 277                          | _           | 1 00                 |
| 0.442           | 12 5                   | 0.277                          | 0 0127      | 0.002                |
| 0.410           | 13.5                   | 0.104                          | 0.0137      | 0.992                |
| 0.338           | 1.33                   | 0.0596                         | 0.0447      | 0.924                |
| 0.293           | 0.266                  | 0.0230                         | 0.0866      | 0.707                |
| 0.262           | 0.0525                 | 0.00634                        | 0.121       | 0.323                |
| 0.247           | 0.0176                 | 0.00249                        | 0.142       | 0.137                |
| 0.238           | -                      | -                              | 0.156       | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Temperature : 58°C Net Confining Stress: 2000 psi

| Well: D | MP Harvey-1 |
|---------|-------------|
|---------|-------------|

- Sample Number : 7A
- Sample Depth, meters : 1911.84 Klinkenberg Permeability, md : 0.559
  - Porosity, fraction : 0.107
- Initial Water Saturation, fraction : 1.00
- Specific Permeability to Water, md : 0.266



Steady State Method Extracted State Sample

Net Confining Stress: 2600 psi Temperature: 70°C

| Sample Number :                      | 15A     |
|--------------------------------------|---------|
| Sample Depth, meters :               | 2518.42 |
| Klinkenberg Permeability, md :       | 0.340   |
| Porosity, fraction :                 | 0.103   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 0.206   |

Well: DMP Harvey-1

| CO <sub>2</sub><br>Saturation,<br>fraction Vp | CO₂-Water<br>Relative<br>Permeability<br>Ratio | Relative P<br>to CO <sub>2</sub> *,<br>fraction | ermeability<br>to Water*,<br>fraction | Fractional<br>Flow<br>of CO <sub>2</sub> ,<br>fCO <sub>2</sub> |
|-----------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------------------------------------|
| CO <sub>2</sub> Displacing Water              |                                                |                                                 |                                       |                                                                |
| 0.000                                         | -                                              | -                                               | 1.00                                  | -                                                              |
| 0.203                                         | 0.0158                                         | 0.00289                                         | 0.183                                 | 0.103                                                          |
| 0.235                                         | 0.0485                                         | 0.00618                                         | 0.127                                 | 0.260                                                          |
| 0.288                                         | 0.258                                          | 0.0159                                          | 0.0615                                | 0.652                                                          |
| 0.328                                         | 1.22                                           | 0.0301                                          | 0.0248                                | 0.898                                                          |
| 0.371                                         | 13.4                                           | 0.0542                                          | 0.00405                               | 0.990                                                          |
| 0.389                                         | -                                              | 0.0692                                          | -                                     | 1.00                                                           |
| Water Displacing CO <sub>2</sub>              |                                                |                                                 |                                       |                                                                |

| 0.389 | -      | 0.0692  | -       | 1.00  |
|-------|--------|---------|---------|-------|
| 0.368 | 13.5   | 0.0483  | 0.00358 | 0.990 |
| 0.331 | 1.22   | 0.0252  | 0.0206  | 0.899 |
| 0.294 | 0.262  | 0.0131  | 0.0500  | 0.655 |
| 0.254 | 0.0490 | 0.00439 | 0.0895  | 0.262 |
| 0.233 | 0.0160 | 0.00191 | 0.120   | 0.104 |
| 0.222 | -      | -       | 0.135   | -     |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 70°C

| Well : DMP Harvey-1<br>Ir<br>Spec                                                                                                                                                                                                                                                                  | Sample Number :15ASample Depth, meters :2518.42Klinkenberg Permeability, md :0.340Porosity, fraction :0.103nitial Water Saturation, fraction :1.00cific Permeability to Water, md :0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.5<br>0.4<br>0.4<br>0.4<br>0.2<br>0.4<br>0.2<br>0.1<br>0.2<br>0.0<br>0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.5<br>0.4<br>0.7<br>0.4<br>0.5<br>0.4<br>0.2<br>0.1<br>0.5<br>0.5<br>0.4<br>0.2<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 0.01<br>0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br>Sg, fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7<br>0.8<br>0.9<br>1.0<br>Sq. fraction                                                                                                                               | 1.0<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.6<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 |

Well: DMP Harvey-1

# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 70°C

| Sample Number :                      | 12A     |
|--------------------------------------|---------|
| Sample Depth, meters :               | 2528.07 |
| Klinkenberg Permeability, md :       | 45.1    |
| Porosity, fraction :                 | 0.124   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 15.8    |

|                 | CO <sub>2</sub> -Water |                                |            | Fractional           |
|-----------------|------------------------|--------------------------------|------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative Permeability          |            | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,          | to Water*, | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                       | fraction   | fCO <sub>2</sub>     |
|                 |                        |                                |            |                      |
|                 | C                      | O <sub>2</sub> Displacing Wate | r          |                      |
| 0.000           | _                      | _                              | 1 00       | _                    |
| 0.000           | 0.0175                 | 0 00251                        | 0 143      | 0 113                |
| 0.264           | 0.0173                 | 0.00201                        | 0.143      | 0.113                |
| 0.204           | 0.0020                 | 0.00044                        | 0.105      | 0.657                |
| 0.301           | 1 31                   | 0.0140                         | 0.0002     | 0.007                |
| 0.333           | 13.2                   | 0.0502                         | 0.0250     | 0.900                |
| 0.352           | 15.2                   | 0.0075                         | 0.00014    | 1.00                 |
| 0.407           | -                      | 0.104                          | -          | 1.00                 |
|                 | v                      | Vater Displacing CO            | 2          |                      |
|                 |                        |                                |            |                      |
| 0.467           | -                      | 0.164                          | -          | 1.00                 |
| 0.390           | 13.2                   | 0.0599                         | 0.00453    | 0.990                |
| 0.340           | 1.32                   | 0.0247                         | 0.0188     | 0.905                |
| 0.304           | 0.264                  | 0.0111                         | 0.0422     | 0.657                |
| 0.277           | 0.0530                 | 0.00365                        | 0.0689     | 0.278                |
| 0.258           | 0.0176                 | 0.00163                        | 0.0923     | 0.113                |
| 0.234           | -                      | -                              | 0.128      | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 70°C

| Well : | DMP | Harvey-1 |
|--------|-----|----------|
|--------|-----|----------|

| Sample Number :        | 12A     |
|------------------------|---------|
| Sample Depth, meters : | 2528.07 |

- Klinkenberg Permeability, md : 45.1
  - Porosity, fraction : 0.124
- Initial Water Saturation, fraction : 1.00

Specific Permeability to Water, md : 15.8



# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress : 2600 psi Temperature : 71°C

|                    | Sample Number :                      | 13A     |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-1 | Sample Depth, meters :               | 2530.03 |
|                    | Klinkenberg Permeability, md :       | 91.2    |
|                    | Porosity, fraction :                 | 0.135   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 18.6    |

|                 | CO <sub>2</sub> -Water |                                |            | Fractional           |
|-----------------|------------------------|--------------------------------|------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative Permeability          |            | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,          | to Water*, | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                       | fraction   | fCO <sub>2</sub>     |
|                 |                        |                                | •          |                      |
|                 | C                      | O <sub>2</sub> Displacing Wate | r          |                      |
| 0.000           | _                      | _                              | 1 00       | _                    |
| 0.000           | 0 0282                 | 0.00475                        | 0.168      | - 0 170              |
| 0.240           | 0.0202                 | 0.00473                        | 0.100      | 0.170                |
| 0.230           | 0.0043                 | 0.00304                        | 0.117      | 0.300                |
| 0.372           | 0.422                  | 0.0240                         | 0.0002     | 0.754                |
| 0.445           | 2.11                   | 0.0539                         | 0.0256     | 0.939                |
| 0.527           | 20.8                   | 0.119                          | 0.00571    | 0.993                |
| 0.567           | -                      | 0.165                          | -          | 1.00                 |
|                 | V                      | Votor Diamlasing CO            |            |                      |
|                 | V                      | vater Displacing CO            | 2          |                      |
| 0.567           | -                      | 0.165                          | -          | 1.00                 |
| 0.527           | 20.8                   | 0.103                          | 0.00497    | 0.993                |
| 0.452           | 2.11                   | 0.0414                         | 0.0196     | 0.939                |
| 0.390           | 0.423                  | 0.0179                         | 0.0423     | 0.754                |
| 0.342           | 0.0846                 | 0.00576                        | 0.0681     | 0.380                |
| 0.310           | 0.0284                 | 0.00255                        | 0.0001     | 0 171                |
| 0.010           | 0.0204                 | 0.00200                        | 0.0300     | 0.171                |
| 0.290           | -                      | -                              | 0.100      | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 71°C

Well: DMP Harvey-1

| Sample Number :                | 13A     |
|--------------------------------|---------|
| Sample Depth, meters :         | 2530.03 |
| Klinkenberg Permeability, md : | 91.2    |
| Porosity, fraction :           | 0.135   |

Initial Water Saturation, fraction : 1.00

Specific Permeability to Water, md : 18.6



# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress: 1700 psi Temperature: 48°C

|                    | Sample Number :                      | 1A      |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-3 | Sample Depth, meters :               | 1427.47 |
|                    | Klinkenberg Permeability, md :       | 180.    |
|                    | Porosity, fraction :                 | 0.231   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 94.9    |

|                 | CO <sub>2</sub> -Water |                                 |            | Fractional           |
|-----------------|------------------------|---------------------------------|------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative Permeability           |            | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,           | to Water*, | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                        | fraction   | fCO <sub>2</sub>     |
|                 |                        |                                 | _          |                      |
|                 | Ĺ                      | O <sub>2</sub> Displacing water | r          |                      |
| 0.000           | -                      | -                               | 1.00       | -                    |
| 0.171           | 0.0118                 | 0.00154                         | 0.131      | 0.117                |
| 0.207           | 0.0355                 | 0.00307                         | 0.0864     | 0.286                |
| 0.263           | 0.177                  | 0.00781                         | 0.0440     | 0.667                |
| 0.318           | 0.888                  | 0.0174                          | 0.0196     | 0.909                |
| 0.389           | 8.87                   | 0.0393                          | 0.00444    | 0.990                |
| 0.461           | -                      | 0.0832                          | -          | 1.00                 |
|                 |                        |                                 |            |                      |
|                 | v                      | Vater Displacing CO             | 2          |                      |
| 0.461           | -                      | 0.0832                          | -          | 1.00                 |
| 0.386           | 8.88                   | 0.0335                          | 0.00378    | 0.990                |
| 0.318           | 0.890                  | 0.0132                          | 0.0148     | 0.909                |
| 0.267           | 0.179                  | 0.00605                         | 0.0339     | 0.668                |
| 0.221           | 0.0356                 | 0.00218                         | 0.0613     | 0.286                |
| 0.190           | 0.0118                 | 0.00106                         | 0.0897     | 0.117                |
| 0.137           | _                      | -                               | 0.156      | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature : 48°C

|--|

| Sample Number :                      | 1A      |
|--------------------------------------|---------|
| Sample Depth, meters :               | 1427.47 |
| Klinkenberg Permeability, md :       | 180.    |
| Porosity, fraction :                 | 0.231   |
| Initial Water Saturation, fraction : | 1.00    |
| Specific Permeability to Water, md : | 94.9    |

100 1.0 0.9 0.8 10 Relative Permeability Ratio 0.7 0.6 fraction 0.5 ج ب 0.4 0.3 Krw 0.2 KrCO<sub>2</sub> 0.1 0.0 0.001 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Sg, fraction Sg, fraction 1.0 0.9 Krw 0.8 fCO<sub>2</sub> 0.7



# CO2 - WATER / WATER - CO2 RELATIVE PERMEABILITY

Steady State Method Extracted State Sample

Net Confining Stress: 1700 psi Temperature: 56°C

|                    | Sample Number :                      | 6B      |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-4 | Sample Depth, meters :               | 1794.27 |
|                    | Klinkenberg Permeability, md :       | 1120.   |
|                    | Porosity, fraction :                 | 0.219   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 258.    |

|                 | CO <sub>2</sub> -Water |                                  |             | Fractional           |
|-----------------|------------------------|----------------------------------|-------------|----------------------|
| CO <sub>2</sub> | Relative               | Relative P                       | ermeability | Flow                 |
| Saturation,     | Permeability           | to CO <sub>2</sub> *,            | to Water*,  | of CO <sub>2</sub> , |
| fraction Vp     | Ratio                  | fraction                         | fraction    | fCO <sub>2</sub>     |
|                 |                        |                                  |             |                      |
|                 | C                      | CO <sub>2</sub> Displacing Water | r           |                      |
| 0 000           | -                      | _                                | 1 00        | -                    |
| 0.244           | 0.0128                 | 0.000944                         | 0.0738      | 0.107                |
| 0.277           | 0.0385                 | 0.00186                          | 0.0483      | 0.265                |
| 0.334           | 0.193                  | 0.00466                          | 0.0242      | 0.643                |
| 0.395           | 0.965                  | 0.0115                           | 0.0119      | 0.900                |
| 0.484           | 9.64                   | 0.0340                           | 0.00352     | 0.989                |
| 0.578           | -                      | 0.0868                           | -           | 1.00                 |
|                 |                        |                                  |             |                      |
|                 | v                      | Vater Displacing CO              | 2           |                      |
| 0 578           | _                      | 0 0868                           | _           | 1 00                 |
| 0 491           | 9 64                   | 0.0265                           | 0 00275     | 0.989                |
| 0 401           | 0.967                  | 0.00890                          | 0.00920     | 0.900                |
| 0.342           | 0.193                  | 0.00354                          | 0.0184      | 0.643                |
| 0.305           | 0.0385                 | 0.00113                          | 0.0292      | 0.265                |
| 0.284           | 0.0128                 | 0.000479                         | 0.0374      | 0.107                |
| 0.258           | -                      | _                                | 0.0481      | -                    |

\* Relative to the Specific Permeability to Brine

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature : 56°C

|                    | Sample Number :                      | 6B      |
|--------------------|--------------------------------------|---------|
| Well: DMP Harvey-4 | Sample Depth, meters :               | 1794.27 |
|                    | Klinkenberg Permeability, md :       | 1120.   |
|                    | Porosity, fraction :                 | 0.219   |
|                    | Initial Water Saturation, fraction : | 1.00    |
|                    | Specific Permeability to Water, md : | 258.    |



# **BASIC PROPERTIES OF TEST SAMPLES**

| Sampla              | Donth    | Net Confining | Permeability, |        | Deresity  | Grain    |  |
|---------------------|----------|---------------|---------------|--------|-----------|----------|--|
| Sample              | Depth,   | Stress,       | millida       | ircies | Porosity, | Density, |  |
| Number              | meters   | psi           | Klinkenberg   | Kair   | fraction  | g/cm°    |  |
|                     |          |               |               |        |           |          |  |
| Well : DMP Harvey-1 |          |               |               |        |           |          |  |
| 7A                  | 1911.84  | 2000          | 0.559         | 0.838  | 0.107     | 2.63     |  |
| 15A                 | 2518.42  | 2600          | 0.340         | 0.390  | 0.103     | 2.684    |  |
| 12A                 | 2528.07  | 2600          | 45.1          | 50.7   | 0.124     | 2.651    |  |
| 13A                 | 2530.03  | 2600          | 91.2          | 104    | 0.135     | 2.641    |  |
| Well: DMP H         | larvey-3 |               |               |        |           |          |  |
| 1A                  | 1427.47  | 1700          | 180           | 269    | 0.231     | 2.631    |  |
| Well : DMP Harvey-4 |          |               |               |        |           |          |  |
| 6B                  | 1794.27  | 1700          | 1120          | 1360   | 0.219     | 2.63     |  |

# SUMMARY OF SAMPLE PARAMETERS

| Sample<br>Number | Depth,<br>meters | Net Confining<br>Stress,<br>psi | Length,<br>cm | Area,<br>cm² | Pore<br>Volume,<br>cm <sup>3</sup> |
|------------------|------------------|---------------------------------|---------------|--------------|------------------------------------|
| Well: DMP Ha     | arvey-1          |                                 |               |              |                                    |
| 7A               | 1911.84          | 2000                            | 6.20          | 11.282       | 7.478                              |
| 15A              | 2518.42          | 2600                            | 6.40          | 11.222       | 7.363                              |
| 12A              | 2528.07          | 2600                            | 5.11          | 11.222       | 7.091                              |
| 13A              | 2530.03          | 2600                            | 6.02          | 11.222       | 9.070                              |
| Well: DMP Ha     | arvey-3          |                                 |               |              |                                    |
| 1A               | 1427.47          | 1700                            | 6.08          | 10.752       | 14.430                             |
| Well: DMP Ha     | arvey-4          |                                 |               |              |                                    |
| 6B               | 1794.27          | 1700                            | 6.72          | 11.252       | 16.046                             |

# TAGGED SYNTHETIC FORMATION BRINE

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|                    | Constituent                             | Concentration,<br>g/L |
|--------------------|-----------------------------------------|-----------------------|
|                    |                                         |                       |
| Sodium Chloride    | (NaCl)                                  | 11.538                |
| Calcium Chloride   | (CaCl <sub>2</sub> * 2H <sub>2</sub> O) | 5.000                 |
| Magnesium Chloride | (MgCl <sub>2</sub> *6H <sub>2</sub> O)  | 2.500                 |
| Potassium Chloride | (KCI)                                   | 2.500                 |
| Sodium Iodide*     | (Nal)                                   | 73.000                |

\* 73.000 g/L Nal replaces 28.462 g/L NaCl when tagging brine for x-ray saturation monitoring

# SUMMARY OF FLUID PARAMETERS

| Fluid                            | Temperature,<br>°C | Viscosity,<br>centipoise | Density,<br>g/cm <sup>3</sup> |
|----------------------------------|--------------------|--------------------------|-------------------------------|
|                                  |                    |                          |                               |
| Tagged Simulated Formation Brine | 48                 | 0.624                    | 1.05                          |
|                                  | 56                 | 0.548                    | 1.04                          |
|                                  | 58                 | 0.536                    | 1.04                          |
|                                  | 70                 | 0.445                    | 1.02                          |
|                                  |                    |                          |                               |
| Carbon Dioxide                   | 48                 | 0.0554                   | 0.691                         |
|                                  | 56                 | 0.0586                   | 0.714                         |
|                                  | 58                 | 0.0590                   | 0.717                         |
|                                  | 70                 | 0.0614                   | 0.729                         |

Well : Harvey-1; Harvey-3; Harvey-4

# CO<sub>2</sub> - WATER RELATIVE PERMEABILITY

Unsteady State Method Extracted State Samples Net Confining Stress : Various psi Temperature : Various °C

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|                      |         |               |           | Initial Conditions |              | Terminal Conditions |                      |                       |         |           |
|----------------------|---------|---------------|-----------|--------------------|--------------|---------------------|----------------------|-----------------------|---------|-----------|
|                      |         |               |           | Water              | Specific     | Water               | Effective            | Relative              | Water F | lecovery, |
|                      | Sample  | Klinkenberg   |           | Saturation,        | Permeability | Saturation,         | Permeability         | Permeability          | frac    | ction     |
| Sample               | Depth,  | Permeability, | Porosity, | fraction           | to Brine,    | fraction            | to CO <sub>2</sub> , | to CO <sub>2</sub> *, | pore    | water in  |
| Number               | meters  | millidarcies  | fraction  | pore space         | millidarcies | pore space          | millidarcies         | fraction              | space   | place     |
| Well : DMP Harvey-1  |         |               |           |                    |              |                     |                      |                       |         |           |
| 7B                   | 1911.89 | 0.632         | 0.108     | 1.00               | 0.297        | 0.426               | 0.240                | 0.809                 | 0.574   | 0.574     |
| 8B                   | 1919.90 | 1.98          | 0.126     | 1.00               | 0.875        | 0.584               | 0.187                | 0.213                 | 0.416   | 0.416     |
| 9B                   | 2491.78 | 227.          | 0.135     | 1.00               | 62.7         | 0.533               | 23.5                 | 0.374                 | 0.467   | 0.467     |
| 11A                  | 2522.54 | 19.2          | 0.133     | 1.00               | 9.03         | 0.315               | 7.60                 | 0.842                 | 0.685   | 0.685     |
| Well : DMP Harvey-3A |         |               |           |                    |              |                     |                      |                       |         |           |
| 4A                   | 1369.84 | 106.          | 0.218     | 1.00               | 1.21         | 0.691               | 0.915                | 0.757                 | 0.309   | 0.309     |
| 3B                   | 1392.35 | 6.19          | 0.142     | 1.00               | 0.0758       | 0.619               | 0.0342               | 0.450                 | 0.381   | 0.381     |

\* Relative to the Specific Permeability to Brine

# WATER - CO<sub>2</sub> RELATIVE PERMEABILITY

Unsteady State Method Extracted State Samples Net Confining Stress : Various psi Temperature : Various °C

Wells : DMP Harvey-1; DMP Harvey-3; DMP Harvey-4

|                     |         |               |           | Initial C   | onditions            | Τe              | erminal Condit | ions         |        |          |
|---------------------|---------|---------------|-----------|-------------|----------------------|-----------------|----------------|--------------|--------|----------|
|                     |         |               |           | Water       | Effective            | CO <sub>2</sub> | Effective      | Relative     | CO2 Re | ecovery, |
|                     | Sample  | Klinkenberg   |           | Saturation, | Permeability         | Saturation,     | Permeability   | Permeability | frac   | tion     |
| Sample              | Depth,  | Permeability, | Porosity, | fraction    | to CO <sub>2</sub> , | fraction        | to Water,      | to Water*,   | pore   | gas in   |
| Number              | meters  | millidarcies  | fraction  | pore space  | millidarcies         | pore space      | millidarcies   | fraction     | space  | place    |
| Well : DMP Harvey-1 |         |               |           |             |                      |                 |                |              |        |          |
| 7B                  | 1911.89 | 0.632         | 0.108     | 0.426       | 0.240                | 0.213           | 0.063          | 0.214        | 0.361  | 0.629    |
| 8B                  | 1919.90 | 1.98          | 0.126     | 0.584       | 0.187                | 0.172           | 0.246          | 0.282        | 0.244  | 0.586    |
| 9B                  | 2491.78 | 227.          | 0.135     | 0.533       | 23.5                 | 0.145           | 17.5           | 0.279        | 0.322  | 0.690    |
| 11A                 | 2522.54 | 19.2          | 0.133     | 0.315       | 7.60                 | 0.317           | 1.92           | 0.213        | 0.368  | 0.537    |
| Well : DMP Harvey-3 |         |               |           |             |                      |                 |                |              |        |          |
| 4A                  | 1369.84 | 106.          | 0.218     | 0.691       | 0.915                | 0.122           | 0.716          | 0.593        | 0.187  | 0.606    |
| 3B                  | 1392.35 | 6.19          | 0.142     | 0.619       | 0.0342               | 0.201           | 0.0298         | 0.393        | 0.180  | 0.472    |

\* Relative to the Specific Permeability to Brine

#### **BASIC PROPERTIES OF TEST SAMPLES**

| Sample       | Depth,   | Net Confining<br>Stress, | Permeability,<br>millidarcies |       | Porosity, | Grain<br>Density, |
|--------------|----------|--------------------------|-------------------------------|-------|-----------|-------------------|
| Number       | meters   | psi                      | Klinkenberg                   | Kair  | fraction  | g/cm <sup>3</sup> |
| Well : DMP H | larvey-1 |                          |                               |       |           |                   |
| 7B           | 1911.89  | 2000                     | 0.632                         | 0.933 | 0.108     | 2.63              |
| 8B           | 1919.90  | 2000                     | 1.98                          | 2.64  | 0.126     | 2.63              |
| 9B           | 2491.78  | 2600                     | 227.                          | 257.  | 0.135     | 2.64              |
| 11A          | 2522.54  | 2600                     | 19.2                          | 22.0  | 0.133     | 2.64              |
| Well: DMP H  | larvey-3 |                          |                               |       |           |                   |
| 4A           | 1369.84  | 1250                     | 106.                          | 114.  | 0.218     | 2.64              |
| 3B           | 1392.35  | 1250                     | 6.19                          | 7.23  | 0.142     | 2.64              |

#### SUMMARY OF SAMPLE PARAMETERS

| Sample<br>Number    | Depth,<br>meters | Net Confining<br>Stress,<br>psi | Length,<br>cm | Area,<br>cm² | Pore<br>Volume,<br>cm <sup>3</sup> |  |  |
|---------------------|------------------|---------------------------------|---------------|--------------|------------------------------------|--|--|
| Well : DMP Harvey-1 |                  |                                 |               |              |                                    |  |  |
| 7B                  | 1911.89          | 2000                            | 6.45          | 11.28        | 7.79                               |  |  |
| 8B                  | 1919.90          | 2000                            | 6.16          | 11.25        | 8.71                               |  |  |
| 9B                  | 2491.78          | 2600                            | 6.40          | 11.34        | 9.73                               |  |  |
| 11A                 | 2522.54          | 2600                            | 5.91          | 11.34        | 8.85                               |  |  |
| Well : DMP Harvey-3 |                  |                                 |               |              |                                    |  |  |
| 4A                  | 1369.84          | 1250                            | 6.85          | 11.04        | 16.14                              |  |  |
| 3B                  | 1392.35          | 1250                            | 6.80          | 11.31        | 10.67                              |  |  |

## SYNTHETIC FORMATION BRINE

| Constituent        | Concentration,<br>g/L |        |
|--------------------|-----------------------|--------|
| Sodium Chloride    | (NaCl)                | 40 000 |
| Calcium Chloride   | $(CaCl_2 * 2H_2O)$    | 5.000  |
| Magnesium Chloride | $(MgCl_2*6H_2O)$      | 2.500  |
| Potassium Chloride | (KCI)                 | 2.500  |

## SUMMARY OF FLUID PARAMETERS

| Fluid                     | Temperature,<br>°C | Viscosity,<br>centipoise | Density,<br>g/cm <sup>3</sup> |
|---------------------------|--------------------|--------------------------|-------------------------------|
|                           |                    |                          |                               |
| Simulated Formation Brine | 48                 | 0.630                    | 1.05                          |
|                           | 56                 | 0.624                    | 1.05                          |
|                           | 58                 | 0.536                    | 1.04                          |
|                           | 70                 | 0.453                    | 1.02                          |
|                           |                    |                          |                               |
| Carbon Dioxide            | 48                 | 0.0560                   | 0.697                         |
|                           | 56                 | 0.0554                   | 0.691                         |
|                           | 58                 | 0.0590                   | 0.717                         |
|                           | 70                 | 0.0621                   | 0.736                         |











Scan Settings - Window: 1500 / Level: 1700






Scan Settings - Window: 1500 / Level: 1700























Petroleum Services 6316 Windfern Houston, Texas 77040 USA Tel: 713-328-2565 Fax: 713-328-2567 www.corelab.com



February 1, 2018 AUS-1703703















# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 2000 psi Temperature : 58.0°C

| Well: DN | IP Harvey-1 |
|----------|-------------|
|----------|-------------|

| Sample Number :                       | 7A      |
|---------------------------------------|---------|
| Sample Depth, meters :                | 1911.84 |
| Klinkenberg Permeability to Air, md : | 0.559   |
| Porosity, fraction :                  | 0.107   |
| Initial Water Saturation, fraction :  | 1.00    |
| Specific Permeability to Brine, md :  | 0.266   |
| Specific Permeability to Brine, md :  | 0.266   |

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm <sup>3</sup> /min | Gas<br>Flow Rate,<br>cm <sup>3</sup> /min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|
|                                         |                                                             |                                             |                                           |                                     |                                   |
| Specific Kw                             | -                                                           | 0.500                                       | -                                         | 20.5                                | -                                 |
| -                                       | 0.018                                                       | 0.445                                       | 0.055                                     | 36.2                                | 4.48                              |
| -                                       | 0.055                                                       | 0.365                                       | 0.135                                     | 9.77                                | 3.61                              |
| -                                       | 0.260                                                       | 0.035                                       | 0.065                                     | 4.46                                | 8.29                              |
| -                                       | 1.25                                                        | 0.010                                       | 0.090                                     | 5.74                                | 51.7                              |
| -                                       | 13.9                                                        | 0.005                                       | 0.495                                     | 0.131                               | 13.0                              |
| Kg at Swr                               | -                                                           | -                                           | 0.500                                     | -                                   | 13.3                              |
| -                                       | 13.5                                                        | 0.016                                       | 1.484                                     | 0.746                               | 69.2                              |
| -                                       | 1.33                                                        | 0.024                                       | 0.226                                     | 3.24                                | 30.5                              |
| -                                       | 0.266                                                       | 0.088                                       | 0.162                                     | 5.20                                | 9.57                              |
| -                                       | 0.052                                                       | 0.073                                       | 0.027                                     | 10.0                                | 3.68                              |
| -                                       | 0.018                                                       | 0.089                                       | 0.011                                     | 5.35                                | 0.661                             |
| Kw at Sgt                               | -                                                           | 0.100                                       | -                                         | 14.2                                | -                                 |

### CO<sub>2</sub> - BRINE / BRINE - CO<sub>2</sub> RELATIVE PERMEABILITY

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 70.0°C

| Well :          | DMP Harvey-1 |
|-----------------|--------------|
| Sample Number : | 15A          |

| Sample Depth, meters : 25 | 18.42 |
|---------------------------|-------|

Klinkenberg Permeability to Air, md : 0.340

Porosity, fraction : 0.103

Initial Water Saturation, fraction : 1.00 Specific Permeability to Brine, md : 0.206

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm <sup>3</sup> /min | Gas<br>Flow Rate,<br>cm <sup>3</sup> /min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|
|                                         |                                                             | 4.00                                        |                                           | 10.4                                |                                   |
| Specific KW                             | -                                                           | 1.00                                        | -                                         | 13.4                                | -                                 |
| -                                       | 0.016                                                       | 0.092                                       | 0.008                                     | 33.6                                | 3.04                              |
| -                                       | 0.049                                                       | 0.079                                       | 0.021                                     | 10.5                                | 2.79                              |
| -                                       | 0.258                                                       | 0.106                                       | 0.144                                     | 6.75                                | 9.17                              |
| -                                       | 1.22                                                        | 0.013                                       | 0.087                                     | 1.73                                | 11.5                              |
| -                                       | 13.4                                                        | 0.007                                       | 0.493                                     | 1.10                                | 75.3                              |
| Kg at Swr                               | -                                                           | -                                           | 0.500                                     | -                                   | 73.8                              |
| -                                       | 13.5                                                        | 0.007                                       | 0.493                                     | 1.50                                | 100                               |
| -                                       | 1.22                                                        | 0.013                                       | 0.087                                     | 1.72                                | 11.5                              |
| -                                       | 0.262                                                       | 0.106                                       | 0.144                                     | 6.00                                | 8.16                              |
| -                                       | 0.049                                                       | 0.079                                       | 0.021                                     | 10.9                                | 2.89                              |
| -                                       | 0.016                                                       | 0.092                                       | 0.008                                     | 5.44                                | 0.473                             |
| Kw at Sgt                               | -                                                           | 0.100                                       | -                                         | 12.9                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 71.0°C

| Wel | I: DMP | Harvey-1 |
|-----|--------|----------|
|     |        | ,        |

| Sample Number :                       | 12A     |
|---------------------------------------|---------|
| Sample Depth, meters :                | 2528.07 |
| Klinkenberg Permeability to Air, md : | 45.1    |
| Porosity, fraction :                  | 0.124   |
| Initial Water Saturation, fraction :  | 1.00    |
| Specific Permeability to Brine, md :  | 15.8    |

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm <sup>3</sup> /min | Gas<br>Flow Rate,<br>cm <sup>3</sup> /min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|
|                                         |                                                             |                                             |                                           |                                     |                                   |
| Specific Kw                             | -                                                           | 3.00                                        | -                                         | 19.7                                | -                                 |
| -                                       | 0.018                                                       | 2.73                                        | 0.267                                     | 14.7                                | 1.43                              |
| -                                       | 0.053                                                       | 2.32                                        | 0.681                                     | 14.1                                | 4.13                              |
| -                                       | 0.264                                                       | 1.22                                        | 1.784                                     | 7.72                                | 11.3                              |
| -                                       | 1.31                                                        | 0.360                                       | 2.640                                     | 1.72                                | 12.6                              |
| -                                       | 13.2                                                        | 0.040                                       | 2.960                                     | 0.549                               | 40.6                              |
| Kg at Swr                               | -                                                           | -                                           | 3.000                                     | -                                   | 23.3                              |
| -                                       | 13.2                                                        | 0.040                                       | 2.960                                     | 0.489                               | 36.2                              |
| -                                       | 1.31                                                        | 0.360                                       | 2.640                                     | 2.49                                | 18.3                              |
| -                                       | 0.264                                                       | 1.22                                        | 1.784                                     | 7.89                                | 11.6                              |
| -                                       | 0.053                                                       | 2.32                                        | 0.681                                     | 13.7                                | 4.03                              |
| -                                       | 0.018                                                       | 2.73                                        | 0.267                                     | 12.0                                | 1.17                              |
| Kw at Sgt                               | -                                                           | 2.70                                        | -                                         | 8.75                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 2600 psi Temperature : 71.0°C

|  | Well : | DMP | Harvey-1 |
|--|--------|-----|----------|
|  |        |     |          |

| Sample Number :                        | 13A     |
|----------------------------------------|---------|
| Sample Depth, meters :                 | 2530.03 |
| Klinkenberg Permeability to Air, md :  | 91.2    |
| Porosity, fraction :                   | 0.135   |
| Initial Water Saturation, fraction :   | 1.00    |
| Creatific Devreachility to Drive and i | 10.0    |

Specific Permeability to Brine, md : 18.6

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm³/min | Gas<br>Flow Rate,<br>cm³/min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Specific Kw                             | _                                                           | 3.00                           | _                            | 29.8                                | _                                 |
| -                                       | 0.028                                                       | 2.59                           | 0.408                        | 17.1                                | 2.70                              |
| -                                       | 0.084                                                       | 1.36                           | 0.641                        | 5.10                                | 2.40                              |
| -                                       | 0.422                                                       | 0.595                          | 1.41                         | 3.81                                | 8.99                              |
| -                                       | 2.11                                                        | 0.156                          | 1.84                         | 1.24                                | 14.6                              |
| -                                       | 20.8                                                        | 0.017                          | 1.98                         | 0.098                               | 11.4                              |
| Kg at Swr                               | -                                                           | -                              | 2.00                         | -                                   | 22.1                              |
| -                                       | 20.8                                                        | 0.017                          | 1.98                         | 0.288                               | 33.6                              |
| -                                       | 2.11                                                        | 0.156                          | 1.84                         | 0.723                               | 8.55                              |
| -                                       | 0.423                                                       | 0.595                          | 1.41                         | 2.82                                | 6.67                              |
| -                                       | 0.085                                                       | 1.36                           | 0.641                        | 6.30                                | 2.97                              |
| -                                       | 0.028                                                       | 2.59                           | 0.408                        | 10.3                                | 1.62                              |
| Kw at Sgt                               | -                                                           | 2.50                           | -                            | 7.16                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature : 48.0°C

| Well : | DMP | Harvey-3 |
|--------|-----|----------|
|--------|-----|----------|

| Sample Number :                       | 1A      |
|---------------------------------------|---------|
| Sample Depth, meters :                | 1427.47 |
| Klinkenberg Permeability to Air, md : | 180     |
| Porosity, fraction :                  | 0.231   |
| Initial Water Saturation, fraction :  | 1.00    |
| Specific Dormochility to Dring and :  | 04.0    |

Specific Permeability to Brine, md : 94.9

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm³/min | Gas<br>Flow Rate,<br>cm³/min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| Specific Kw                             | _                                                           | 2 00                           | _                            | 11.5                                | _                                 |
| -                                       | 0.012                                                       | 1.81                           | 0.187                        | 7.19                                | 0.742                             |
| -                                       | 0.036                                                       | 1.53                           | 0.474                        | 7.74                                | 2.40                              |
| -                                       | 0.177                                                       | 0.784                          | 1.22                         | 6.10                                | 9.49                              |
| -                                       | 0.888                                                       | 0.457                          | 3.54                         | 2.37                                | 18.4                              |
| -                                       | 8.87                                                        | 0.102                          | 7.90                         | 0.365                               | 28.2                              |
| Kg at Swr                               | -                                                           | -                              | 8.00                         | -                                   | 30.4                              |
| -                                       | 8.88                                                        | 0.102                          | 7.90                         | 0.254                               | 19.7                              |
| -                                       | 0.890                                                       | 0.457                          | 3.54                         | 1.76                                | 13.6                              |
| -                                       | 0.179                                                       | 1.57                           | 2.43                         | 3.13                                | 4.86                              |
| -                                       | 0.036                                                       | 1.53                           | 0.474                        | 12.6                                | 3.93                              |
| -                                       | 0.012                                                       | 1.81                           | 0.187                        | 11.6                                | 1.19                              |
| Kw at Sgt                               | -                                                           | 2.00                           | -                            | 9.59                                | -                                 |

# $\ensuremath{\text{CO}}_2\xspace$ - BRINE / BRINE - $\ensuremath{\text{CO}}_2\xspace$ Relative permeability

Steady State Method Extracted State Sample Net Confining Stress : 1700 psi Temperature: 56.0°C

| Well :                                | DMP Harvey-4 |
|---------------------------------------|--------------|
| Sample Number :                       | 6B           |
| Sample Depth, meters :                | 1794.27      |
| Klinkenberg Permeability to Air, md : | 1120         |
| Porosity, fraction :                  | 0.219        |
| Initial Water Saturation, fraction :  | 1.00         |
| Specific Permeability to Brine, md :  | 258          |
|                                       |              |

| Endpoint<br>Permeability<br>Measurement | CO <sub>2</sub> -Brine<br>Relative<br>Permeability<br>Ratio | Brine<br>Flow Rate,<br>cm <sup>3</sup> /min | Gas<br>Flow Rate,<br>cm <sup>3</sup> /min | Brine<br>Throughput,<br>pore volume | Gas<br>Throughput,<br>pore volume |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|
|                                         |                                                             |                                             |                                           |                                     |                                   |
| Specific Kw                             | -                                                           | 2.00                                        | -                                         | 8.91                                | -                                 |
| -                                       | 0.013                                                       | 1.83                                        | 0.171                                     | 7.59                                | 0.710                             |
| -                                       | 0.039                                                       | 1.56                                        | 0.439                                     | 10.7                                | 3.01                              |
| -                                       | 0.193                                                       | 0.831                                       | 1.169                                     | 3.70                                | 5.21                              |
| -                                       | 0.966                                                       | 0.996                                       | 7.00                                      | 3.40                                | 23.9                              |
| -                                       | 9.64                                                        | 0.112                                       | 7.89                                      | 0.429                               | 30.2                              |
| Kg at Swr                               | -                                                           | -                                           | 8.00                                      | -                                   | 25.1                              |
| -                                       | 9.65                                                        | 0.112                                       | 7.89                                      | 0.302                               | 21.3                              |
| -                                       | 0.967                                                       | 0.996                                       | 7.00                                      | 2.26                                | 15.9                              |
| -                                       | 0.193                                                       | 1.17                                        | 0.831                                     | 4.05                                | 5.70                              |
| -                                       | 0.039                                                       | 1.56                                        | 0.439                                     | 6.79                                | 1.91                              |
| -                                       | 0.013                                                       | 1.83                                        | 0.171                                     | 8.05                                | 0.753                             |
| Kw at Sgt                               | -                                                           | 2.00                                        | -                                         | 10.2                                | -                                 |