Integrating outcrop, aeromagnetic and gravity data: models of the east Albany–Fraser Orogen

By L Brisbout, CV Spaggiari and ARA Aitken

Introduction

- Interpret crustal architecture from outcrop, aeromagnetic and gravity data
- Architecture described in:
 - Structural interpretation (map view)
 - 2. Forward modelling (section view)
- This architecture provides an interpretation along-strike of seismic line 12GA-AF3

Datasets used for map and modelling

- Geological Data
 - 1. 1:250 K and 1:100K mapsheets
 - WAROX database
 - 3. GSWA geochronology
- Geophysical Data
 - 1. 50 400 m line-spacing aeromagnetic data
 - 2. 2.5 to ~ 5 km grid gravity data
 - 3. Geophysical datasets has been enhanced by the application of various filters

Method – Structural interpretation

- In map view structures have largely been interpreted from aeromagnetic data
- For example:
 - Faults and shears
 - 2. Folds
 - 3. The plunge of fold axes have been constrained using the field-based structural observations and the asymmetry of magnetic gradients
- Large-scale structures have also been interpreted from gravity data
- Where possible, GSWA geochronology has been used to constrain the age of magnetic fabrics

Nornalup Zone

Demagnetised shear

Structural interpretation

Fraser Zone – NE trending folds

- Magnetic fabric is dominated by linear,
 NE trending horizons, common regional
 NE trending folds
- Correlated with NE trending, steeply dipping gneissic to mylonitic foliation that contains intrafolial folds
- Foliation formed during Stage I peak metamorphism (c. 1290 Ma, c. 850 °C, 7–9 kbar; Clark et al., 2014)
- Regional scale folds and outcrop scale folds formed in a progressive deformation event during Stage I

Fraser Zone – Nand NNW trending folds

- In the centre of the study area, magnetic horizons appear to be folded around N/NNW trending axial traces
- ~ orthogonal to the dominant NE trend
- Foliation parallel to magnetic horizons, no Stage II metamorphism
- Interpreted dextral movement on the bounding NE trending shears
 - Supported by dextrally asymmetric folds observed in metagabbro
- Alternatively, produced by NE-SW shortening

Fraser Zone – 'Eye' features

- The Fraser Zone contains 'Eye' shaped magnetic features
- These features can be interpreted as:
 - Doubly plunging antiforms or synforms of non-cylindrical folds

2. Magnetic porphyroclasts

Nornalup Zone – Structural trends

- The NW of the Nornalup Zone contains regional scale folds (~ 15 km)
 - Folds have NE and N trending axial traces
 - Chaotic magnetic fabric at the intersection
 - Paleoproterozoic material and Recherche Supersuite
 - Age of folding Stage I/II
- In the SE of the Nornalup Zone, NE of the Tagon SZ, the magnetic fabric is dominated by magmatic trends

SE Nornalup Zone – Magmatic trends

- Magnetics: Intensely magnetic, circular, intermediate intrusives, coincident gravity anomalies
- Outcrop: Intrusive porphyritic monzogranite, interpreted to be Esperance Supersuite, commonly intrudes migmatitic basement of unknown age
- Balladonia Rock (1135 ± 56 Ma)

Forward Modelling – Method

- 2.5 D, magnetic and gravity forward models, southwest of 12GA–AF3
- Forward modelling involved:
 - 1. Sampling magnetic and gravity data at 500 m spacing from a Bouguer gravity grid (cell size 1 km) and an RTP magnetic grid (cell size 75 m)
 - 2. Geometries constrained by geological information
 - 3. Physical properties constrained by specific gravity and susceptibility data from the east Albany–Fraser Orogen

Profile 1 – Forward model

Fraser Zone - Magnetic modelling

Profile 1 – Forward model

Fraser Zone – Sensitivity testing

- Sensitivity testing: producing a range of models that satisfy the specific gravity and surface geology
- With the median specific gravity for all Fraser Zone samples (3 gcm⁻³) the Fraser Zone extends to a depth of 12.4 km
- With a lower density the Fraser Zone extends to a greater depth
- With a higher density the Fraser Zone extends to a shallower depth

Profile 2 – Forward model

Long wavelength gravity anomaly – Sensitivity test

Imaging the Fraser Zone: Gravity and deep crustal seismic

Forward Modelling

Deep Crustal Seismic (GA12–AF3)

Conclusions

- Fraser Zone contains regional NE trending folds, interpreted to have formed during Stage I and coeval structures produced by dextral movement on NE trending shears
- In section view, the Fraser Zone is near triangular in shape and extends to a depth of 12.4–14.5 km
- The long wavelength anomaly to the southeast of the Fraser Zone can be modelled as a sill-like body of mafic material
- This interpreted sill is located in the mid-crust and has a maximum thickness of 14.5 km