Cenozoic Records of Eustasy, Dynamic Topography, and Neotectonics from the Eucla Basin

Mick O'Leary¹, Milo Barham² and Lewis Mounsher³

¹Department of Environment and Agriculture, Curtin University

²Department of Applied Geology, Curtin University

³Woodside Energy, Perth, Western Australia

Pliocene sea level archives from the Roe Plain

Evidence of former sea levels up to 28 m above present (TECTONIC CONTAMINATION?)

Crustal deformation of the Australian continent during the Cenozoic

- Tectonically Quiescent X
- Actively deforming ✓
 - Paucity of onshore data

- Evolution of stress fields?
- Significance of strain structures i.e., seismic hazard/basin evolution?
- Tectonic contamination of palaeoshoreline data?

Rapid northward drift of the Australian continental plate

From Reynolds et al. 2003; Hillis et al. 2008

Evidence of dynamic movement on the Nullarbor

(Provided by surface digital elevation models)

Karst dissolution of Nullarbor Plain

Compounding factor when quantifying dynamic crustal movement

- Nullarbor limestone has been emergent for the past 15 My
- Nullarbor is heavily karst and no longer represents the original depositional surface

Utilise subsurface horizontal bedding surfaces (i.e., shaved shelf morphology) to measure deformation

- Here we utilise the "horizontal" erosional unconformities between subsurface limestone formations: Abrakurrie/Nullarbor
- These buried contact surfaces provide an initial horizontal datum and should not be affected by karst dissolution

Murra-el-elevyn Cave

Thylacine Hole

Contact elevation of the basal Nullarbor Limestone

Warping of Nullarbor Plain (1 to 2 m/Mya)

— < 10 m of uplift of Pliocene Roe Plain</p>

Fault characterisation on the Nullarbor Plain

- Modal strike intervals: 340-010 and 030-050 (i.e. trending ~N-S)
- Neotectonic 'SHmax' is E-W oriented in the Eucla Basin region
- Max horizontal stress approximately perpendicular to measured fault traces – infer reverse faulting

Fault displacement on the Nullarbor Plain

- Fault displacement on the order of 10 to 35 m
- The onshore faults exhibit anomalously low 'displacement: scarp length' ratios
- Established fault growth models imply displacements an order of magnitude greater than the observed values
- Possible strike-slip (oblique-slip) component??

Conclusions

- E/W tilting of the Nullarbor Plain evident in subsurface marine erosional unconformities
 - Deformation driven by dynamic topography
- Regional scale warping evident along the Roe Plain
 - Deformation driven by isostatic compensation
- Numerous fault scarps evident on the Nullarbor Plain
 - Surficial faults are likely neotectonic (reverse dip slip sense of displacement is probable)
 - Anomalously low 'displacement: scarp length' ratios imply strike slip movement (or support an alternative fault growth model!)