The Capricorn Orogen Magnetotelluric (MT) Transect

Graham Heinson, Goran Boren, Jonathan Ross, <u>Joan Campanya</u>, <u>Stephen Thiel</u> and Katherine Selway

University of Adelaide, Adelaide SA 5005

CAPRICORN SEISMIC and MT WORKSHOP 2011

Wednesday 23rd November 2011

Mineral House, 100 Plain Street East Perth

Government of Western Australia Department of Mines and Petroleum

Capricorn MT Survey

- 3 survey lines
- 156 sites in total
- CP1: 13 Long Period, 39
 Broad Band
- CP2: 19 Long Period, 55
 Broad Band
- CP3: 8 Long Period, 22 Broad Band

Long period

- Sampling rate: 10 Hz
- Deployment time: 5 Days
- Spacing: 15km

Broad Band

- Sampling rate: 1000 Hz
- Deployment time 2-4 Days
- Spacing: 5km

Selway et al. (2009) published long-period MT results from two lines

This survey adds to the extent of the lines and also includes broad-band data at smaller sampling intervals.

TMI (left) and Gravity (right) profiles. Yellow circles: long-period MT; Blue circles: broad-band MT

Red symbols: long-period MT Green symbols: Broadband MT

Line CP1

CP1 Comments

- MT Data are quite distorted (not 2D, very 3D)
- Top 200 m conductive
- Then resistive layer $(10^3 \Omega.m)$
- Very conductive below 2 km (10 Ω .m we'd normally expect 10⁴ Ω .m)
- Appears to underlay all CP1 and northern CP2

Line CP2

Green symbols: Broadband MT Capricorn MT Survey Line CP 2 ULLAWARRA EUDAMULLAH 0_5-10_20_30 Kilometers

Red symbols: long-period MT

CP2 Comments

- MT Data are distorted (not 2D, very 3D)
- Very different crustal signature
 - North of dashed line upper crust is very conductive
 - South of dashed line,
 upper crust is much
 more resistive
- Some evidence of conductive shear zones through crust

Line CP3

Red symbols: long-period MT Green symbols: Broadband MT

CP3 Comments

- Much simpler data set, less distortion
 - Upper crust is much more "normal"
 - Conductive 10 Ω .m sediments to 200 m
- Very conductive shear zone here
 - North of dashed line, crust is slightly more conductive
 - South of line, quite uniform

Conclusions

- Errabiddy Shear Zone is clearly indentified in CP3. Zone of low resistivity
 - 10 km wide, and extends to at least 25 km
 - South-dipping, in both the low-resistivity shear zone, and also in the more resistive structures to the south

Conclusions

2. We do not resolve the depth and geometry of the Minnie Creek Batholith, but note that this is coincident with a profound change in the crustal resistivity along line CP2, which appears to be coincident with the Lyons River Fault.

Conclusions

- Little in terms of basin structure and faults in the Pilbara-Hamersley-Ashburton Basin-Edmund Basin (CP1-CP2)
 - Low-resistivity structures observed at depths of 2-10 km
 - Simple interpretation of the lowresistivity due to highlyconnected magnetite
 - Higher resistivity layers above have lower magnetite content, either due to the depth of weathering front, or due to intrusive bodies in the south

Acknowledgements

- The Western Australian Government's Royalties for Regions Exploration Incentive Scheme (EIS)
- Australia Federal Government's National Earth Science Infrastructure Program (AuScope)
- GSWA and Geoscience Australia are thanked for significant logistical support for the MT fieldwork
- The authors gratefully acknowledge pastoralists and Aboriginal communities for allowing us access to the land.
- We are indebted to the many station owners along this profile that provided accommodation for the field crews and made the survey achievable in October and November.

