

Government of Western Australia Department of Mines, Industry Regulation and Safety Geological Survey of Western Australia

New directions in metamorphic studies at GSWA

Presented by

Fawna Korhonen

Introduction – Why should we care about metamorphic rocks?

- Record the pressure (P)—
 temperature (T)—time (t)—
 deformation—fluid evolution on
 many scales
- Crustal response to broader tectonothermal processes
- Assemblage may record a composite history
- New techniques to interrogate the rock record

New directions in metamorphic studies at GSWA

Metamorphic data points → State Metamorphic Map

- GOLDEN SPIKES of robust metamorphic data across the State
- Retrieval of robust and standardized P-T-t data
 - ➤ Thermobarometry, mineral chemistry, in situ geochronology
 - > Integrated with mineralization studies
 - Utilizing state-of-the-art techniques
 - > From field to microanalytical scale
- Data capture and query: Geochronology and Mineral Chemistry database (in development)

Pressure (P)—temperature (T) estimates: example

garnet-staurolite schist, West Kimberley

Petrography and mineral chemistry

- Garnet (cores + Qtz-Ilm-Mu-Chl)
- Garnet (rims) + Staurolite (Qtz-Ilm-Bt)
- 3. Foliation: Chl–Bt–Mu–Qtz

- Constructed for specific bulk composition
- Chemical system closely approximates nature
- Minerals and fluids
- Observe changes in model assemblages with P-T-composition (X)

- I. Garnet (cores) + Qtz-Ilm-Mu-Chl
- 2. Garnet (rims) + Staurolite (Qtz-Ilm-Bt)
- 3. Foliation: Chl–Bt–Mu–Qtz

- I. Garnet (cores) + Qtz-Ilm-Mu-Chl
- 2. Garnet (rims) + Staurolite (Qtz-Ilm-Bt)
- 3. Foliation: Chl–Bt–Mu–Qtz

- 1. Garnet (cores) + Qtz-Ilm-Mu-Chl
- 2. Garnet (rims) + Staurolite (Qtz-Ilm-Bt)
- 3. Foliation: Chl–Bt–Mu–Qtz

Garnet cores: $X_{Ca} = 0.18$, $X_{Mn} = 0.09$ Garnet rims: $X_{Ca} = 0.08$, $X_{Mn} > 0.08$

In situ geochronology: monazite

The hunt for monazite: TESCAN integrated mineral analyser (TIMA) scan

In situ geochronology: monazite (laser ablation split stream)

Monazite trace element chemistry

GeoVIEW.WA

New directions in metamorphic studies at GSWA – where we have been, where we are, and where we are going...

PAST:

- Field-based work, geophysics, geochemistry, geochronology
- Metamorphic studies not routinely done at GSWA; not standardized

PRESENT: GOLDEN SPIKES of robust metamorphic data across the State

- Protocol developed for the construction of isochemical phase diagrams (pseudosections)
- Protocols and work flow now in place for routine and standardized mineral chemistry and in situ monazite geochronology (+ trace elements)
- Detailed field and microanalysis integrated with P-T-t data
- Continuing to explore and apply new techniques, particularly in regards to thermobarometry (e.g. Raman barometry, trace element thermometers)

FUTURE:

- Metamorphic History Records (linked with GeoVIEW)
- Geochronology and Mineral Chemistry database
- Metamorphic State Map (descriptive versus interpreted)

