Sulfur sources and magmatic sulfide mineralization in the Fraser Zone

Alex Walker, Katy Evans, Christopher Kirkland

Magmatic sulfides and sulfur isotopes

 Sulfur isotopes allow tracing of sulfur through the Earth

 A powerful tool with which to fingerprint sulfur incorporated into mineral prospects

Tracking of sulfur sources and fertility

Sulfur Isotope 101

Ratios of sulfur isotopes ³²S, ³³S,
³⁴S can be used to characterize sulfur reservoirs

•
$$\delta^{34}S = \left\{ \frac{(^{34}S/^{32}S)_{sample} - (^{34}S/^{32}S)_{reference}}{(^{34}S/^{32}S)_{reference}} \right\} x 1000$$

- Magmatic sulfide deposits sulfur isotopes:
 - characterize origin
 - degree of mixing between distinct sources
- Can be used to identify Archean input

2. Aesiphaideattioenagiosetteganvittorchetsiinniiengtansjestigthatdefter

Albany-Fraser Orogen

 Orogenic belt sandwiched between Yilgarn Craton and Madura Province

 Divided into Northern Foreland and Kepa Kurl Booya Province

 Reworked cratonic vs mixed cratonic and juvenile material

Fraser Zone

 Interpreted as mid-crustal hot zone formed by mantle upwelling

 Metagabbros/metagranites, ultramafics and metasediments

Prospective for magmatic sulfide mineralization

Petrography

- Mafic and metasedimentary rocks
- Sulfides analysed primarily pyrrhotite, pentlandite and chalcopyrite (± secondary pyrite)
- Breccias, disseminated, net textured and massive sulfides at Octagonal
- Disseminated and blebby sulfides at Plato

Methodology

Petrography

• In-situ analysis via IMS1280

Thin section 'pucks' embedded into epoxy

• Standard materials either embedded or mounted alongside

-0.87 – 3.11‰ range (1.05‰)

2.25 – 5.93‰ range (4.31‰)

4.44 – 7.88‰ range (6.12‰)

 Sulfides analysed primarily pyrrhotite, pentlandite and chalcopyrite (± pyrite)

Minimal fractionation – likely coeval formation

- Plato
 - -0.87 3.11‰ range (1.05‰)
- Octagonal
 - 2.25 5.93% range (4.31%)
- Assimilation of external sulfur

Increasing metasedimentary component (7.07%)

- Plato
 - -0.87 3.11‰ range (1.05‰)
- Octagonal
 - 2.25 5.93% range (4.31%)
- Assimilation of external sulfur

Increasing metasedimentary component (7.07%)

How much?

Sulfur mixing models

- Simple mixing model between mantle derived magmas and Snowys Dam Formation metasediments
- Mineralized material ~4.25‰
- Assimilation of component equal to ~30% mass of sulfur in magma
- Incongruent melting

Sulfur mixing models

- Simple mixing model between mantle derived magmas and Snowys Dam Formation metasediments
- Mineralised material ~4.25‰
- Assimilation of component equal to ~30% mass of sulfur in magma
- Incongruent melting

Sulfur mixing models

 Simple mixing model between mantle derived magmas and Snowys Dam Formation metasediments

Plato material ~1.05‰

 Assimilation of component equal to ~5% mass of sulfur in magma

Archean component in the Fraser Zone

 Whole rock geochemistry, Hf and Nd isotopes and dated inherited zircon grains establish a Biranup basement to Fraser Zone

Biranup is itself reworked Archean lithologies

 Arid Basin includes sparse pre-1500 Ma detrital zircons

Archean sulfur in the Fraser Zone

Archean sediment (and Biranup basement material) assimilated by the Fraser Zone magmas during emplacement; also present in Snowys Dam metasediments

Archean sulfur in the Fraser Zone

 Archean sulfur may be identified via MIF signature

• Deviation from MDF line reflects MIF; Δ^{33} S

• Collected data indicates overall Δ^{33} S signature of $-0.03 \pm 0.08\%$

Archean sulfur in the Fraser Zone

 Modelling suggests dilution not the answer

 Likely stripping of sulfides from material via sedimentary processes

 Phases more resistant to weathering (e.g. zircon) survive

Sulfide mapping

 TIMA analysis: identification/quantification of mineralogy

Sulfide mapping

• Elemental mapping of sulfide surfaces via laser ablation

Testing of spatial relationships

r = 0.03M1/M2 = 0.95/0.23

 Test images were used to assess how this technique can be applied and whether results are realistic

Colocalization analysis

 Statistically significant relationship between distributions of fractures and Mn

 Fluid flow and remobilization of metals via fracture networks is a means by which mineral deposits may be upgraded or destroyed

Conclusions

- More positive sulfur isotopic signature at mineralized Octagonal relative to poorly mineralized Plato
- Mineralization linked to greater degree of country rock sulfur assimilation
- Absence of Archean sulfur within the Fraser Zone
- Laser ablation elemental mapping of sulfides
- Development of technique to quantify spatial relationships
 - Metal remobilization may upgrade or destroy mineralization