Interpretation of Albany–Fraser seismic lines 12GA–AF1, 12GA–AF2 and 12GA–AF3: implications for crustal architecture

ANSIR FACILITY FOR EARTH SOUNDING

CV Spaggiari, SA Occhipinti, RJ Korsch, MP Doublier, DJ Clark, MC Dentith, K Gessner, MG Doyle, IM Tyler, BLN Kennett, RD Costelloe, T Fomin and J Holzschuh

Seismic and MT Workshop: April 9th 2014

Australian Government

Locations of seismic lines Albany–Fraser Orogen Yamarna Terrane. Mount Ragged Formation Eastern Goldfields Lindsay Hill Fm Superterrane Fraser Zone (1305-1290 Ma) **YILGARN CRATON** Burtville Terrane Gwynne Creek Gneiss Big Red 3 Malcolm Metamorphics Kurnalpi Terrane Nornalup Zone (1800-1760 Ma); Recherche (1330-1280 Ma) Kalgoorlie Haig and Esperance (1200-1140 Ma) Noraling AF3/ Ponton Creek Gneisso Supersuites (undivided) Kalgoorlie Biranup Zone (1800–1650 Ma) WE Youanmi Terrane and Archean remnants Terrane Barren Basin (undivided) Northern Foreland Munglinup Gneiss (2800–2660 Ma) AF₂ Undivided -done - seation MRE Tropicana Zone MADURA Esperance 34° Heywood-Cheyne Shear Zone PROVINCE SRF Salisbury Island Western Nornalup Zone Albany **Bight Basin** SOUTHERN OCEAN 100 km 120° 123°

- Problems of 2-dimensionality, apparent dip
- Migration
- Large areas of non-reflectivity
- Limited outcrop, and complete cover to the east (Eucla Basin)
- Need to make use of all available geological and geophysical data

- Utilize interpreted bedrock geology (IBG) maps
- Map and section Plates with abstract volume

Munglinup Gneiss; Northern Foreland

- Leucocratic orthogneiss
 with mafic lenses
- Upper amphibolite facies
- Higher metamorphic grade, more deformed Northern Foreland

12GA–AF2

Magma chamber

12GA–AF2 and 12GA–AF1 combined

Seismic line 12GA–AF3

Final emplacement of the Fraser Zone

Bounding shear zones with different kinematics and lower T deformation

- active during Stage II?

Dextral strike-slip on Fraser Shear Zone

Yilgarn Craton Bitanup tone Bitanup tone Frase tone S-bend area S-bend area Combined SE-side up vertical movement and sinistral strikeslip on Newman Shear Zone

Conclusions

- The 3 seismic lines provide 2D cross-sections across the entire orogen
- The orogen has a predominant southeast dip, and shear zones generally have listric form
- Interpreted as largely due to craton-vergent thrusting probable inverted structures
- The largest structures are the shear zones associated with the Biranup-Nornalup Zone boundary – extend to the Moho, but some difference along-strike
- The Fraser Zone has a V-shaped geometry modified pop-up structure
- Three seismic provinces are recognised the Yarraquin, the Udarra, and the Gunnadorrah Seismic Provinces
- Large areas of non-reflective crust reflectivity possibly masked by magmatic processes, which were prevalent during AFO evolution
- The only suture recognised so far is the Rodona Shear Zone Eucla-Gawler line in progress