Interpretation of gravity data of the Madura and Coompana Provinces along the deep crustal seismic survey 13GA–EG1

Gessner, Klaus, Murdie, Ruth E, Brisbout, Lucy, Spaggiari, Catherine V, Brett, John – GSWA

Dutch, Rian A, Thiel, Stephan, Wise, Tom, Pawley, Mark J – GSSA
Gravity and Aeromagnetic data 13GA EG-1

Gravity data

- Along seismic line, station spacing = 500 m, in vicinity, station spacing = 2 – 11 km
- Grid cell size = 400 m

Magnetic data

- Flight-line spacing = 200 – 400 m
- Grid cell size = 80 m
Observed potential field data
Methods

1. 3D gravity inversions (GOCAD)
2. 2D gravity and magnetic forward modelling (GM-SYS)
3D Gravity inversions
3D model area

Government of Western Australia Department of Mines and Petroleum
Seismic Interpretation
3D model based on domains
Moho

Yilgan-Albany Fraser “ditch” (Sippl et al. in prep)

Double dip under West Gawler
Inversions – gravity 3D

1) Initial model lower crust 2.8, middle crust 2.7, upper crust 2.67 except 2.8 Fraser Z.
2) Homogeneous block inversion using the 20 km upward cont.
3) Geometry inversion
4) Heterogeneous density inversion using the upward continued data where just the middle layers are allowed to vary in density – fixed bottom layers. This is making the assumption that the long wavelength variation is in the middle crust.
5) Vary upper crust vary heterogeneously using the full gravity field including the high frequency component, but middle crust is still available to vary.
Inversions - gravity
3D Inversion comments

• Lots of assumptions need to be fine tuned
• Initial results:
 • West Gawler Seismic Province appears to be high density all through the crust
 • The Toolgana middle-lower crust has a similar density to the West Gawler SP – possibly is part of West Gawler?
 • Yarraquin SP and Albany Fraser have similar densities with the Madura middle crust having a slightly higher density.
 • The Yilgarn and Upper Madura have low densities
 • The Fraser Zone with a high gabbroic content has a very high density
 • The Coompana Province upper crustal domains have similar densities to the Albany Fraser
 • The Forrest Lakes middle crust requires a very low density to underlie the moderate densities of the upper crust
2D Gravity Forward Model - Method

EG1-west model setup:
- GM-SYS 2D forward modelling software
- RTP aeromagnetic data and Bouguer gravity data sampled every ~500 m along EG1-west
- Model extends from the topographic surface to 70 km depth and west and east of the ends of the profile to reduce edge effects
- Observed magnetic data set at 80m above topography
- Gravity stations at 1 m above topography

Forward modelling approach:
- Basins and Moho constrained using seismic interp.
- Properties (density and susceptibility) constrained using petrophysical data (particularly the upper crust) and properties used in adjacent seismic lines (AF3 and EG1-east)
~4 km thinning produces ~33 mGal increase in calc. Gravity

The ~33 mGal increase in calc. gravity occurs where we see a large (~70 mGal) decrease in observed Gravity

The crust thickens again to east (by ~5km), approaching the Gawler Craton, producing a ~72 mGal decrease in gravity
• Eucla Basin = 2.30 g/cm³; Officer Basin = 2.60 g/cm³ (van der Wielen et al., 2015)
• Lateral Eucla thickness variation account for some higher frequency anomalies.
• Several examples where basin thickening, associated with basement faults produces a high frequency trough in the Bouger gravity data
 • e.g Nuria Scarp is associated with a 20 m topographic depression and deepening of Eucla Basin (by ~800 m) and produces gravity trough (~6 mGal obs. gravity)
Specific gravity – Eucla stratigraphic drill core

<table>
<thead>
<tr>
<th>Unit</th>
<th>Rock type/s</th>
<th>Specific gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moodini Supersuite</td>
<td>Monzogabbro (KCG)</td>
<td>MAD014</td>
</tr>
<tr>
<td></td>
<td>Monzogranite to syenogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granodiorite to monzogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottle Corner Shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syenogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dense Loongana, Haig, Serpent rocks?</td>
<td></td>
</tr>
<tr>
<td>Unnamed metabasalt</td>
<td>Metabasalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adakite</td>
<td></td>
</tr>
<tr>
<td>Haig Cave Supersuite</td>
<td>Metabasalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monzogabbro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monzogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granodiorite to monzogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottle Corner Shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syenogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dense Loongana, Haig, Serpent rocks?</td>
<td></td>
</tr>
<tr>
<td>Pinto Basalt</td>
<td>Metabasalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monzogabbro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monzogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granodiorite to monzogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottle Corner Shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syenogranite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si-shoshonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dense Loongana, Haig, Serpent rocks?</td>
<td></td>
</tr>
</tbody>
</table>

Western Coompana
- TS and US average/slightly above average densities
- Exceptions include mafic components and Si-rich (evolved) shoshonites

Madura Province
- Includes dense basalts (incl. Pinto Basalt) and monzogabbro (KCG, MS)
- Also includes felsic/intermediate MS granites
- Dense Loongana, Haig, Serpent rocks?
Alternative Moho depth
Can ‘the wedge’ be Gunnadorrah?

- Obs. Bouguer gravity
- Calc. gravity

Mundrabilla SZ With density of Gunnadorrah SP

Density (g/cm³)
- 3.20
- 2.82
- ≤2.60

Distance (km)
Depth (km)
0 50 100 150 200 250 300 350 400 450 60 20 40 60

Error 10.024
What happened to the Coompana lower crust?
Learnings

1. Mundrabilla SZ separates significantly different crustal domains
2. W’ Coompana differs in thickness, structure and composition
3. Better understanding of petrophysics needed across the study area (electrical, density, velocity, ...) that will help understand craton, craton margins and ‘oceanic domains’ anywhere in WA and Australia
Progress: Better Questions

1. If common ancestry across MSZ – what chain of events involving which processes reworked either side of MSZ?
2. Can we assume homogeneous mantle density across MSZ?
3. Aside from MSZ – what do the structural transitions in the lower and mid-crust between W’ Coompana to the west and east mean?