

Government of Western Australia Department of Mines and Petroleum

Fisher East nickel sulfide prospects

Lauren Burley

Thanks to Steve Barnes, Marco Fiorentini, David Mole, Will Belbin and Rox Resources

Location

Kalgoorlie Terrane: home to a majority of Ni deposits in the EGST and major focus of exploration

Kurnalpi Terrane: largely ignored, Ni deposits scarce

Is this terrane less prospective, or just under explored?

Location

New deposits being discovered near Kurnalpi-Burtville Terrane boundary

Testing prospectivity of the Kurnalpi Terrane by comparing komatiites at Fisher East to komatiites in the Kalgoorlie Terrane

Key Research Aims

- Characterise volcanological setting and komatiite flow-field characteristics;
- Identify the style and composition of nickel sulfide mineralization;
- Determine petrogenesis and metallogenic prospectivity of the ultramafic succession;
- Focus towards nickel sulfide mineralization.

Methods:

- Core logging; 10 drillholes across 4 prospects
- Petrography
- Geochemistry; whole-rock and pXRF
- Hyperspectral work

Fisher East Prospects

Deposit type: Komatiite-hosted nickel sulfide deposit

Komatiites; talccarbonate altered

Igneous textures destroyed

Deformation in drillholes evident, but extent unknown

Mineralization

5 types of komatiite-hosted nickel sulfide deposits, based on Lesher and Keays, 2002 classification

Type 1 and 2 deposits - most common in the Kalgoorlie Terrane

Type 1: massive sulfides on basal komatiite contact

Mineralization

Typical "type 1" mineralization

Massive sulfides on basal contact between komatiites and metasedimentary units

Mineralization contact

Massive sulfides

Semi-massive sulfides

'Matrix' sulfides

Komatiite – secondary textural features

Chlorite rich matrix with carbonate ± quartz veins;

Talc rich matrix + carbonate knots;

Geochemistry of komatiites

MFED060 – Non-mineralized drillhole between Camelwood and Cannonball

Government of Western Australia Department of Mines and Petroleum

Komatiite flow

A zone – chlorite rich matrix; more chlorite, higher Al₂O₃, Zr and Ti; **Spinifex**

B zone – talc rich matrix; higher MgO and Ni; **Cumulates and mineralization**

Diagram from Hill, 2001

Al₂O₃/TiO₂ ratios

Trace Element Features

Incompatible trace elements show crustal contamination – can be used as a proxy for mineralization

Komatiite volcanic facies

-0.7 -0.6 0.3 -0.8 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.4 0.5 0.6 0.7

Interpretation and Implications

Interpretations – Volcanic Architecture

Points to note

System with a lot of B zone comparative to A zones

Flows with high proportion of B zones = high flux magma pathways (Hill, 2001, Barnes et al., 2004)

Ore zones contain thicker B zones – possible flow channels?

*Note for diagram: no horizontal scaling. Basal contact used as horizontal datum to depict variation in flow thickness

Interpretations – Volcanic Architecture

<u>Ni/Cr and Ni/Ti ratios – difficult to get</u> <u>definitive facies</u>

- HOWEVER, definitely not in the DC or LLLS field
- Core logging: Higher proportion of B to A zone rules out LLLS and TDF facies

Fisher East = CSF Facies Positive for prospectivity

Interpretations – Primary melt characteristics

Al₂O₃/TiO₂ – Al-undepleted : Komatiite melt source = shallow.

- Fisher East; below chondritic mantle line:
- Primary source difference, e.g. Ti depletion?
- Alteration/contamination?

Fisher East Prospectivity

Fisher East: all the right ingredients to host a large nickel sulfide deposit

* Developed in a channelised high flux flow field * Rich in cumulates

* Evidence of crustal contamination

Conclusions

Fisher East vs Kalgoorlie Terrane - Similarities

- ✓ Both AI undepleted komatiites
- ✓ Both contain type 1 mineralization
- ✓ Both show crustal contamination
- ✓ Both have systems within the 'Channelised Sheet Flow' volcanic facies

Fisher East vs Kalgoorlie Terrane - Differences

- Some Kalgoorlie Terrane deposits have adcumulates
- Stratigraphy komatiites directly associated by basalts or intermediate-felsic volcanics (Barnes and Fiorentini, 2012).

Kurnalpi Terrane: Less prospective or under explored?

Do other prospects along the Kurnalpi-Burtville Terrane boundary display the same level of prospectivity?

This study opens up the entire region prospectivity wise and calls for more exploration!

Questions?