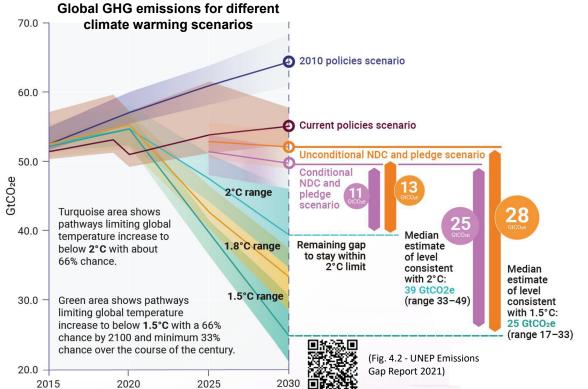


Government of Western Australia Department of Mines, Industry Regulation and Safety

Mineral Carbonation An option for CO₂ mitigation in Western Australia? 60 Trevor Beardsmore Manager New Energy Systems

Government of Western Australia | Department of Mines, Industry Regulation and Safety | www.dmirs.wa.gov.au


The New Energy Transition

Western Australia aspires to a prosperous and resilient low-carbon future, with net-zero greenhouse gas emissions by 2050

BACKGROUND IMAGE SOURCE - https://www.teriin.org/blog/why-battery-energy-storage-key-renewables-growth

Houston...we have a problem!

Huge gap between aspirational and actual CO₂ emission reductions

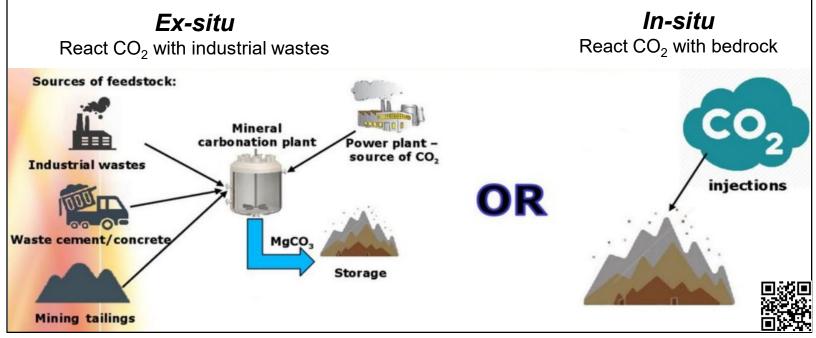
The deficit must be captured using NETs*

* NET - Negative Emission Technology

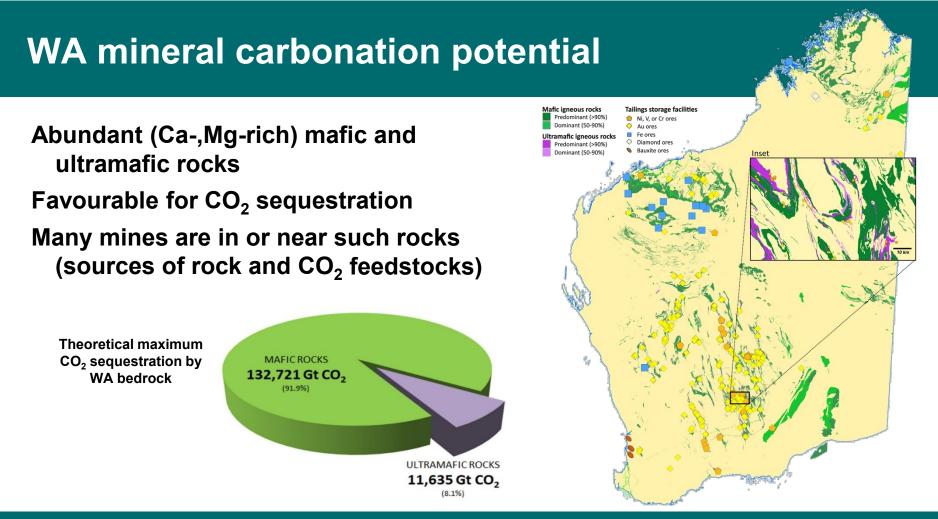
Mineral Carbonation 101

- One NET of many
- React CO₂ with Mg-, Ca- or Fe-rich silicate minerals
- Transform CO₂ into carbonates
- Permanent sequestration

(Ca,Mg,Fe)-silicate + CO₂ + H₂O (e.g. olivine, pyroxene, amphibole) ↓ (Ca,Mg,Fe)-carbonate + SiO₂(aq) + heat (e.g. magnesite, calcite, siderite)



Carbonate-filled fractures in the Samail Ophiolite, Oman (Credit: University of Colorado, Boulder)



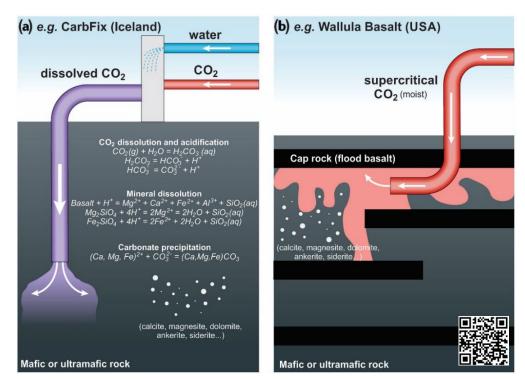
Mineral Carbonation 101

Two processing routes:

Slide 6 @ https://ppt-online.org/54206

How viable is mineral carbonation?

Technically feasible


Many laboratory studies Few demo and pilot-scale projects:

• In situ

(Carbfix, Iceland; Wallula Basalt, USA)

• Ex situ

(MCi Carbon, Australia)

⁽modified from Fig 4 in Snæbjörnsdóttir et al., 2020)

The Carbonation Challenge

Not yet economically viable

- low values of CO₂ and carbonation products
- inadequately characterized feedstock resources

(e.g. distribution, abundance, chemical & physical properties)

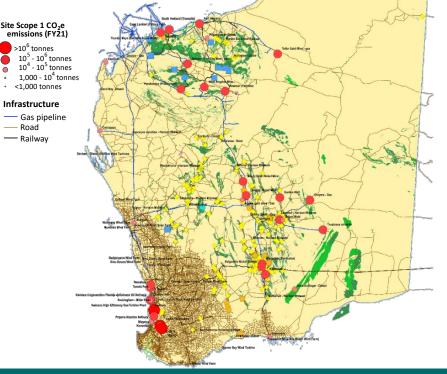
lagging government policies

Making it real (in WA)

Mineral Carbonation Roadmap

(Curtin University & MRIWA Project M10462)

Technical & economic feasibility studies


(CSIRO CarbonLock program)

Petrophysical properties of bedrock resources (CSIRO & Edith Cowan University)

GSWA is:

- characterizing feedstock resources
- contributing data & advice to government & other projects

Distribution of prospective bedrock and mine tailings, transport infrastructure and sites emitting significant CO₂

Other opportunities

Potential co-products may influence economics

- Construction materials
- Critical minerals

	Waste Management v.29 p.2722-2728 (2009) journal homepage: www.elsevier.com/locate/wasman		under an and the second second
Production of lig	shtweight aggregate from industrial waste and	carbon d	ioxide
Peter J. Gunning*, Co	olin D. Hills, Paula J. Carey		

©2020 Society of Economic Geologists, Inc. Economic Geology, v. 115, no. 2, pp. 303–323

Accelerating Mineral Carbonation in Ultramafic Mine Tailings via Direct CO_2 Reaction and Heap Leaching with Potential for Base Metal Enrichment and Recovery

Jessica L. Hamilton,^{1,2,†} Siobhan A. Wilson,^{2,3} Bree Morgan,^{2,4} Anna L. Harrison,⁵ Connor C. Turvey,^{2,6} David J. Paterson,¹ Gregory M. Dipple,⁶ and Gordon Southam⁷

For more information: Trevor Beardsmore

Manager New Energy Systems

trevor.beardsmore@dmirs.wa.gov.au